Featured Research

from universities, journals, and other organizations

Potential therapeutic target to treat autism, schizophrenia, and epilepsy

Date:
January 28, 2013
Source:
Rockefeller University Press
Summary:
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin and neurexin proteins, for example, are associated with autism and schizophrenia. A new study reveals that another family of proteins linked to these disorders regulates the function of neuroligins and neurexins in order to suppress the development of inhibitory synapses.

A JCB study reveals that a neuronal protein linked to neurodevelopmental disorders suppresses the development of inhibitory synapses. MDGA1 disrupts the interaction between neuroligin-2 and neurexin-1, two synaptic cell adhesion molecules associated with autism and schizophrenia that promote inhibitory synapse development. In this co-culture assay, a neuron forms multiple presynapses (red) with a COS7 cell (right) expressing neuroligin-2 (blue) but only a few presynapses with a cell (left) coexpressing neuroligin-2 and MDGA1 (green).
Credit: Pettem, K.L., et al. 2013. J. Cell Biol. doi:10.1083/jcb.201206028

Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin and neurexin proteins, for example, are associated with autism and schizophrenia. According to a study in The Journal of Cell Biology, another family of proteins linked to these disorders regulates the function of neuroligins and neurexins in order to suppress the development of inhibitory synapses.

Like neurexins and neuroligins, the neuronal proteins MDGA1 and MDGA2 have been linked to autism and schizophrenia, but their function in neurodevelopment was unknown. Both MDGA proteins localize to the plasma membrane, and their extracellular domains are similar to those of cell adhesion molecules. On the other hand, postsynaptic neuroligin proteins are known to help synapses form by associating with neurexins on presynaptic membranes. Neuroligin-2 specifically boosts the development of inhibitory synapses, whereas neuroligin-1 promotes the development of excitatory synapses.

Ann Marie Craig and colleagues from the University of British Columbia investigated the function of MDGAs using co-culture assays, in which postsynaptic proteins like neuroligin-1 or -2 are expressed in non-neuronal cells and then tested for their ability to induce presynaptic differentiation in neighboring neurons. MDGA1 didn't promote synapse formation in these assays. Instead, it inhibited the ability of neuroligin-2 to promote synapse development. The researchers found that MDGA1's extracellular domains bound to neuroligin-2, blocking its association with neurexin. The same domains were sufficient to inhibit neuroligin-2's synapse-promoting activity. In contrast, MDGA1 didn't show high affinity binding to, or inhibit the function of, neuroligin-1. This suggested that, by inhibiting neuroligin-2, MDGA1 might specifically suppress the development of inhibitory synapses, so Craig and colleagues investigated MDGA1 function in cultured hippocampal neurons.

"Overexpressing MDGA1 in neurons reduced the density of inhibitory synapses without affecting excitatory synapses," Craig says. Knocking down MDGA1, on the other hand, increased inhibitory synapse development but had no effect on excitatory synapses.

"I can't think of any other proteins that specifically suppress inhibitory synapse formation," says Craig. Indeed, very few proteins in general have been identified as negative regulators of synapse development, compared to the many proteins that are known to promote synaptogenesis. The results suggest that function-altering mutations in the MDGA proteins may disrupt the balance of excitatory and inhibitory synapses in the brain, potentially explaining the development of autism and other neurodevelopmental disorders.

"This puts MDGAs in the same pathway as neurexins and neuroligins and strengthens the evidence for the involvement of synaptic organizing proteins in autism and schizophrenia," Craig explains. As well as investigating the function of MDGA2, the researchers want to explore the therapeutic potential of MDGA1 inhibitors, not only against autism and schizophrenia but also for the treatment of epilepsy, in which excitatory and inhibitory synapses are also imbalanced


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katherine L. Pettem, Daisaku Yokomaku, Hideto Takahashi, Yuan Ge, and Ann Marie Craig. Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development. J. Cell Biol, 2013 DOI: 10.1083/jcb.201206028

Cite This Page:

Rockefeller University Press. "Potential therapeutic target to treat autism, schizophrenia, and epilepsy." ScienceDaily. ScienceDaily, 28 January 2013. <www.sciencedaily.com/releases/2013/01/130128133902.htm>.
Rockefeller University Press. (2013, January 28). Potential therapeutic target to treat autism, schizophrenia, and epilepsy. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/01/130128133902.htm
Rockefeller University Press. "Potential therapeutic target to treat autism, schizophrenia, and epilepsy." ScienceDaily. www.sciencedaily.com/releases/2013/01/130128133902.htm (accessed September 30, 2014).

Share This



More Mind & Brain News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
Your Spouse's Personality May Influence Your Earnings

Your Spouse's Personality May Influence Your Earnings

Newsy (Sep. 26, 2014) Research from Washington University suggest people with conscientious spouses have greater career success. Video provided by Newsy
Powered by NewsLook.com
Can A Blood Test Predict Psychosis Risk?

Can A Blood Test Predict Psychosis Risk?

Newsy (Sep. 26, 2014) Researchers say certain markers in the blood can predict risk of psychosis later in the life. The test can aid in early treatment for the condition. Video provided by Newsy
Powered by NewsLook.com
Harpist Soothes Gorillas, Orangutans With Music

Harpist Soothes Gorillas, Orangutans With Music

AP (Sep. 25, 2014) Teri Tacheny, a harpist, has a loyal following of fans who appreciate her soothing music. Every month, gorillas, orangutans and monkeys amble down to hear her play at the Como Park Zoo in Minnesota. (Sept. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins