Featured Research

from universities, journals, and other organizations

Placental blood flow can influence malaria during pregnancy

Date:
February 1, 2013
Source:
Instituto Gulbenkian de Ciência (IGC)
Summary:
Malaria in pregnancy causes a range of adverse effects, including abortions and stillbirths. Researchers have observed, for the first time, the mouse placental circulation and showed how it can influence the malaria parasite behavior and infection. Their results indicate a higher accumulation of parasites in placental regions with low blood flow, being these areas more prone to an inflammatory response.

Results indicate a higher accumulation of parasites in placental regions with low blood flow.
Credit: Image courtesy of IGC

Malaria in pregnancy causes a range of adverse effects, including abortions, stillbirths, premature delivery and low infant birth weight. Many of these effects are thought to derive from a placental inflammatory response resulting from interaction of infected red blood cells with the placental tissue. In a study published in the latest issue of the journal PLOS Pathogen, a researchers' team led by Carlos Penha-Gonçalves at the Instituto Gulbenkian de Ciência (IGC), Portugal, observed, for the first time, the mouse placental circulation and showed how it can influence the malaria parasite behavior and infection. Their results indicate a higher accumulation of parasites in placental regions with low blood flow, being these areas more prone to an inflammatory response.

Related Articles


In humans, red blood cells infected with the malaria parasite, Plasmodium falciparum, accumulate in the placenta via interaction with a molecule expressed on the placental tissue -- a process called sequestration. In response to this event, placental cells secrete substances that recruit inflammatory cells leading to placental damage and negatively impacting fetal growth. Until now placental circulation has not been linked to the infected red blood cell sequestration. In fact, it is not trivial to investigate this hypothesis in human placenta, due to technical constraints

Luciana Moraes, an investigator of Carlos Penha-Gonçalves laboratory, has provided new insights to this issue by developing an experimental system that allowed the live observation of the blood flow in the mouse placenta. Mating two strains of mice, one of them with cells stained with a colorful marker, Luciana was able to identify the placental tissue (fetus origin). In collaboration with Carlos Tadokoro's laboratory at the IGC, the investigators developed a microscopy technique that allowed the observation of the placenta in a living mouse. Immediately before exposure to the microscope the mouse was injected with a fluorescent substance that labels the blood. With this set-up it was possible to distinguish maternal blood and placental tissue. The results showed for the first time how the circulation occurs in the placenta, and that the blood flows with different speeds in different regions of the placenta.

Next, the investigators infected red blood cells with the malaria parasite Plasmodium berghei, stained with a different color, and observed -- live -- the behavior of the parasite inside the placenta. They observed that in the areas with higher blood flow, the parasite never stops moving and does not interact with the placental tissue. The accumulation of parasite just occurs in areas of low or absence of flow. In these regions, placental macrophages engulf the infected red blood cells to attempt parasite clearance. Their observations also suggest that movements of the placental tissue may control the blood flow.

Luciana Moraes says: "Our results indicate that binding of infected red blood cells to a molecule expressed in the placenta may not be the only mechanism of parasite sequestration. The dynamics of placental circulation may also play an important role, and should be considered when designing therapeutics."

Carlos Penha-Gonçalves adds: "This is the first study done that shows live how placental blood circulation impacts on the local infection by the malaria parasite. It would be interesting and worthwhile to explore if a similar process occurs in the placenta of humans, taking in consideration that microcirculation in human placenta is quite different."

This study was done in collaboration with University of Vigo, Spain, and was funded by Fundação para a Ciência e a Tecnologia, Portugal.


Story Source:

The above story is based on materials provided by Instituto Gulbenkian de Ciência (IGC). Note: Materials may be edited for content and length.


Journal Reference:

  1. Luciana Vieira de Moraes, Carlos Eduardo Tadokoro, Iván Gómez-Conde, David N. Olivieri, Carlos Penha-Gonçalves. Intravital Placenta Imaging Reveals Microcirculatory Dynamics Impact on Sequestration and Phagocytosis of Plasmodium-Infected Erythrocytes. PLoS Pathogens, 2013; 9 (1): e1003154 DOI: 10.1371/journal.ppat.1003154

Cite This Page:

Instituto Gulbenkian de Ciência (IGC). "Placental blood flow can influence malaria during pregnancy." ScienceDaily. ScienceDaily, 1 February 2013. <www.sciencedaily.com/releases/2013/02/130201090614.htm>.
Instituto Gulbenkian de Ciência (IGC). (2013, February 1). Placental blood flow can influence malaria during pregnancy. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/02/130201090614.htm
Instituto Gulbenkian de Ciência (IGC). "Placental blood flow can influence malaria during pregnancy." ScienceDaily. www.sciencedaily.com/releases/2013/02/130201090614.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins