Featured Research

from universities, journals, and other organizations

Can you predict how a disease will spread in a population?

Date:
February 5, 2013
Source:
University of Bristol
Summary:
New research has laid the foundation for a new generation of zoonotic disease spreading models, which could allow for more targeted prevention strategies.

European badger cub.
Credit: © suerob / Fotolia

How, when and where a pathogen is transmitted between two individuals in a population is crucial in understanding and predicting how a disease will spread. New research has laid the foundation for a new generation of zoonotic disease spreading models, which could allow for more targeted prevention strategies.

By using novel complexity sciences tools the study, published in Physical Review Letters, outlines a predictive model of a spatial epidemic spread in a population of territorial animals.

By quantifying the instances of transmission events, the research team, Dr Luca Giuggioli, Senior Lecturer in Complexity Sciences in the Department of Engineering Mathematics and the School of Biological Sciences at the University of Bristol, and Dr David Sanders and Master's student, Sebastian Pιrez-Becker, from UNAM, Mexico, have determined the propagation speed of a pathogen based on the knowledge of the demography of a species, the way animals wander and the degree of contagiousness of the disease.

As a large percentage of new and remerging human infectious diseases are of animal origin, models that track how pathogens hop from one animal host to another will help develop more effective control measures that are capable of identifying specific individuals or class of individuals rather than ineffective and costly widespread culling procedures of an entire population.

Dr Luca Giuggioli said: "The research findings have the potential to be applicable to various populations of territorial animals worldwide including in the UK bovine Tb in badgers, which has enormous economic implications for the cattle industry."

Bovine tuberculosis (Tb) in badgers, which affects cattle, the farming industry and has become a political issue, is an example of how the model could be used. Badgers are territorial animals and do transmit the infection by passing the bacterial pathogen to individuals in neighbouring territories, which is what the researchers have quantified in their model.

The research was funded by a grant from the Engineering and Physical Sciences Research Council (EPSRC) and the National Autonomous University of Mexico (UNAM), Mexico.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Luca Giuggioli, Sebastian Pιrez-Becker, David P. Sanders. Encounter Times in Overlapping Domains: Application to Epidemic Spread in a Population of Territorial Animals. Physical Review Letters, 2013; 110 (5) DOI: 10.1103/PhysRevLett.110.058103

Cite This Page:

University of Bristol. "Can you predict how a disease will spread in a population?." ScienceDaily. ScienceDaily, 5 February 2013. <www.sciencedaily.com/releases/2013/02/130205102108.htm>.
University of Bristol. (2013, February 5). Can you predict how a disease will spread in a population?. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/02/130205102108.htm
University of Bristol. "Can you predict how a disease will spread in a population?." ScienceDaily. www.sciencedaily.com/releases/2013/02/130205102108.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) — An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) — In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins