Featured Research

from universities, journals, and other organizations

Can you predict how a disease will spread in a population?

Date:
February 5, 2013
Source:
University of Bristol
Summary:
New research has laid the foundation for a new generation of zoonotic disease spreading models, which could allow for more targeted prevention strategies.

European badger cub.
Credit: © suerob / Fotolia

How, when and where a pathogen is transmitted between two individuals in a population is crucial in understanding and predicting how a disease will spread. New research has laid the foundation for a new generation of zoonotic disease spreading models, which could allow for more targeted prevention strategies.

By using novel complexity sciences tools the study, published in Physical Review Letters, outlines a predictive model of a spatial epidemic spread in a population of territorial animals.

By quantifying the instances of transmission events, the research team, Dr Luca Giuggioli, Senior Lecturer in Complexity Sciences in the Department of Engineering Mathematics and the School of Biological Sciences at the University of Bristol, and Dr David Sanders and Master's student, Sebastian Pιrez-Becker, from UNAM, Mexico, have determined the propagation speed of a pathogen based on the knowledge of the demography of a species, the way animals wander and the degree of contagiousness of the disease.

As a large percentage of new and remerging human infectious diseases are of animal origin, models that track how pathogens hop from one animal host to another will help develop more effective control measures that are capable of identifying specific individuals or class of individuals rather than ineffective and costly widespread culling procedures of an entire population.

Dr Luca Giuggioli said: "The research findings have the potential to be applicable to various populations of territorial animals worldwide including in the UK bovine Tb in badgers, which has enormous economic implications for the cattle industry."

Bovine tuberculosis (Tb) in badgers, which affects cattle, the farming industry and has become a political issue, is an example of how the model could be used. Badgers are territorial animals and do transmit the infection by passing the bacterial pathogen to individuals in neighbouring territories, which is what the researchers have quantified in their model.

The research was funded by a grant from the Engineering and Physical Sciences Research Council (EPSRC) and the National Autonomous University of Mexico (UNAM), Mexico.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Luca Giuggioli, Sebastian Pιrez-Becker, David P. Sanders. Encounter Times in Overlapping Domains: Application to Epidemic Spread in a Population of Territorial Animals. Physical Review Letters, 2013; 110 (5) DOI: 10.1103/PhysRevLett.110.058103

Cite This Page:

University of Bristol. "Can you predict how a disease will spread in a population?." ScienceDaily. ScienceDaily, 5 February 2013. <www.sciencedaily.com/releases/2013/02/130205102108.htm>.
University of Bristol. (2013, February 5). Can you predict how a disease will spread in a population?. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/02/130205102108.htm
University of Bristol. "Can you predict how a disease will spread in a population?." ScienceDaily. www.sciencedaily.com/releases/2013/02/130205102108.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins