Featured Research

from universities, journals, and other organizations

Improved X-ray microscopic imaging

Date:
February 6, 2013
Source:
Technische Universitaet Muenchen
Summary:
X-ray microscopy requires radiation of extremely high quality. In order to obtain sharp images instrument and sample must stay absolutely immobile even at the nanometer scale during the recording. Researchers have now developed a method that relaxes these hard restrictions. Even fluctuations in the material can be visualized.

Experimental setup: The test object is moved with nanometer precision through the X-ray beam. The scattered X-rays are captured by a detector. The scattering images are then reconstructed to an image of the sample.
Credit: Image courtesy of Technische Universitaet Muenchen

X-ray microscopy requires radiation of extremely high quality. In order to obtain sharp images instrument and sample must stay absolutely immobile even at the nanometer scale during the recording. Researchers at the Technische Universitaet Muenchen and the Paul Scherrer Institute in Villigen (Switzerland), have now developed a method that relaxes these hard restrictions. Even fluctuations in the material can be visualized.

Related Articles


The journal Nature now reports on their results.

For more than 100 years radiography meant: don't move! In order to visualize nanostructures such as biological cells, the porous structure of cement or storage fields of magnetic disks, the experimentators had to avoid any kind of vibration of X-ray microscope and sample. In addition, only a small percentage fraction of the incoming X-ray radiation could be used. Using special filters, they had to select exactly the fraction with the right properties -- for example, the right wavelength.

Contributions of different wavelengths separated

Pierre Thibault of the Technische Universitaet Muenchen and Andreas Menzel, scientist at the Paul Scherrer Institute (Villigen, Switzerland) have now developed an interpretation method that produces reliable images in spite of vibrations or fluctuations. The method is based on a technique called "ptychography," developed in the 1960s for electron microscopy. Thibault and Menzel's advancements now make it possible to distinguish effects originating from the contribution of different types of X-ray waves.

Fluctuations visualized

Probably the most significant result of the study is that it gives access to a whole class of objects that previously could hardly be investigated. "We now not only can compensate for the vibrations in the microscope," says Andreas Menzel. "We can even characterize fluctuations of the sample itself, even if they are much too fast to be seen with individual snapshots."

"We needed to convince ourselves that the images we produced did indeed reflect accurately the samples and their dynamics," says Pierre Thibault. "So we carried out computer simulations. They confirmed that effects of the instrument as well as of the sample itself, such as flows, switching events or mixed quantum states, can be characterized."

Microscopic view inside

The new method combines the characterization of dynamical states with high-resolution X-ray microscopy. One possible application is to analyze the changing magnetization of individual bits in magnetic storage media with high storage density. The interactions of such single magnetic bits or their thermal fluctuations, which ultimately determine the lifetime of magnetic data storage, could be visualized.

"In addition to its use in imaging," explains Pierre Thibault, "our analysis method also reveals a fundamental relationship to other disciplines: Microscopy and scientific disciplines such as quantum computing, previously regarded as independent, can benefit from each other here."


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pierre Thibault, Andreas Menzel. Reconstructing state mixtures from diffraction measurements. Nature, 2013; 494 (7435): 68 DOI: 10.1038/nature11806

Cite This Page:

Technische Universitaet Muenchen. "Improved X-ray microscopic imaging." ScienceDaily. ScienceDaily, 6 February 2013. <www.sciencedaily.com/releases/2013/02/130206162222.htm>.
Technische Universitaet Muenchen. (2013, February 6). Improved X-ray microscopic imaging. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/02/130206162222.htm
Technische Universitaet Muenchen. "Improved X-ray microscopic imaging." ScienceDaily. www.sciencedaily.com/releases/2013/02/130206162222.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU, Russia, Ukraine Seal Breakthrough Gas Accord

EU, Russia, Ukraine Seal Breakthrough Gas Accord

AFP (Oct. 31, 2014) Russia agrees to resume gas deliveries to war-torn Ukraine through the winter in an EU-brokered, multi-billion dollar deal signed by the three parties in Brussels. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Relief After “gas War” Is Averted

Relief After “gas War” Is Averted

Reuters - Business Video Online (Oct. 31, 2014) A gas war between Russia and Ukraine has been averted. But as Hayley Platt reports a deal was only reached after Kiev's western creditors agreed to partly funding the deal. Video provided by Reuters
Powered by NewsLook.com
Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins