Featured Research

from universities, journals, and other organizations

Synthetic circuit allows dialing gene expression up or down in human cells

Date:
February 12, 2013
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Scientists who built a synthetic gene circuit that allowed for the precise tuning of a gene's expression in yeast have now refined this new research tool to work in human cells, according to new research.

Scientists who built a synthetic gene circuit that allowed for the precise tuning of a gene's expression in yeast have now refined this new research tool to work in human cells, according to research published online in Nature Communications.

Related Articles


"Using this circuit, you can turn a gene from completely off to completely on and anywhere between those two extremes in each cell at once. It's a nice tool if you want to know what happens at intermediate levels of gene expression. There has been no such system so far, but now it is available for mammalian cell research," said senior author Gábor Balázsi, Ph.D., associate professor in The University of Texas MD Anderson Cancer Center Department of Systems Biology.

Present options for altering gene expression in human cells are blunt instruments by comparison. Knocking out a gene eliminates its expression completely. Inhibiting it with RNA interference dials it partially down and can affect other genes. Inserting a gene expression vector into cells overexpresses the gene, but it's usually uncontrolled. Commercially available versions can switch a gene on or off, but cannot precisely dial between these extremes.

"For cancer research, the system will allow scientists to test the boundaries of a gene known to confer resistance to a drug in cancer cells by dialing its expression to different levels and treating the cells with the drug," said first author Dmitry Nevozhay, M.D. Ph.D., instructor in Systems Biology.

"Likewise, such a system would allow personalized gene therapy, by precisely tuning the therapeutic gene level expression depending on disease progression and the patient's need," Nevozhay said.

In microbial or yeast biology research scientists have started to understand and manipulate gene function quantitatively, almost like we understand electronic circuits, Balázsi said. "This makes research in those areas more amenable to engineering and mathematical characterization, -- but that's not true for human cells, and part of the problem is that tools that tune gene expression have been lacking."

A step-by-step guide for others to build mammalian synthetic gene circuits By refining their circuit to work in a human breast cancer cell line, the team demonstrated that their approach can be used in mammalian cells while offering a step-by-step guide that other researchers could follow to build other synthetic circuits for use with other genes.

"With all of our steps reported, if someone wants to build another type of gene expression switch, or oscillator, they could build the circuit in fast-growing yeast cells, where it can be engineered and optimized quickly and reliably," Balázsi said. "Once you know it works in yeast, you know the steps to make it function in human cells. This process is similar to extensive testing of NASA's space operations on Earth before actually carrying them out in space."

Synthetic biologists apply engineering principles to design and build new biological systems for predefined purposes.

In yeast, Balázsi and colleagues synthesized a gene circuit designed to control the level of gene expression precisely using the tetracycline repressor.

They made the promoter for the repressor identical to the promoter for the reporter gene yEGFP encoding the green fluorescent protein. This caused a negative feedback loop, creating a linear dependence of the yEGFP level on the tetracycline analog in the growth medium.

Tunable control of gene expression in mammalian cells

The researchers modified the synthetic network, which initially did not work at all in human cells. A computational model suggested a strategy to optimize the network for mammalian cells.

Several modifications improving transcription, translation and intracellular localization of the regulator protein were added to the synthetic network one at a time. Each one bolstered the network's output in human cells, until it finally achieved a linear dose response of gene expression to the tetracycline analog doxycycline.

Among the additions made to the circuit:

* Addition of an intron (non-coding DNA), which when inserted into genes can increase their expression in mammalian cells.

* Codon optimization in the repressor and reporter genes.

* Introduction of a nuclear-localization sequence, to take the circuit into the cell nucleus, where it can influence gene expression.

* Addition of the Kozak sequence, which improves gene expression in mammalian cells by enhancing translation.

* Promoter optimization, which maximizes the gap between full and basal expression.

Finally, they used the same circuit to control expression of an additional red fluorescence protein gene called mCherry as proof of concept for regulating other genes.

His synthetic gene circuit research won Balázsi a National Institutes of Health New Innovator Award in 2009, one of only 54 such grants made nationally that year to fund bold ideas with the potential to quickly translate research into improved human health.

"This research is not possible without the New Innovator Award," Balázsi said. "It allows you to explore off the beaten path. We aren't looking directly at the next obvious step towards curing cancer or discovering new molecular interactions.

"Yet, we believe steps that don't seem obvious today are crucial for tomorrow's therapies. We've outlined a set of engineering steps that will help us better understand and control gene expression to improve cancer treatment or develop new approaches to gene therapy," he said. "Traditional funding mechanisms would not have done it."

He also received an MD Anderson seed grant to launch his research.

Co-authors with Balázsi and Nevozhay is Tomasz Zal, Ph.D., of MD Anderson's Departments of Immunology and of Molecular and Cellular Oncology.

Research was funded by the NIH Director's New Innovator Award (1DP2 OD006481-01), a grant from the National Cancer Institute (R01 CA137059) and an MD Anderson Institutional Research Grant.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dmitry Nevozhay, Tomasz Zal, Gábor Balázsi. Transferring a synthetic gene circuit from yeast to mammalian cells. Nature Communications, 2013; 4: 1451 DOI: 10.1038/ncomms2471

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Synthetic circuit allows dialing gene expression up or down in human cells." ScienceDaily. ScienceDaily, 12 February 2013. <www.sciencedaily.com/releases/2013/02/130212100600.htm>.
University of Texas M. D. Anderson Cancer Center. (2013, February 12). Synthetic circuit allows dialing gene expression up or down in human cells. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/02/130212100600.htm
University of Texas M. D. Anderson Cancer Center. "Synthetic circuit allows dialing gene expression up or down in human cells." ScienceDaily. www.sciencedaily.com/releases/2013/02/130212100600.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins