Featured Research

from universities, journals, and other organizations

Building a biochemistry lab on a chip

Date:
February 12, 2013
Source:
University of Illinois College of Engineering
Summary:
Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Using micro-fabrication techniques and incorporating a unique design of transistor-based heating, researchers are further advancing the use of silicon transistor and electronics into chemistry and biology for point-of-care diagnostics.

ÿCross-section of device with a droplet. The left side shows an unheated droplet with the DNA FRET construct in the double-stranded form. The right side shows a heated droplet where the FRET construct has denatured, resulting in an increase in fluorescence.
Credit: Image courtesy of University of Illinois College of Engineering

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Using micro-fabrication techniques and incorporating a unique design of transistor-based heating, researchers at the University of Illinois at Urbana-Champaign are further advancing the use of silicon transistor and electronics into chemistry and biology for point-of-care diagnostics.

Related Articles


Cross-section of device with a droplet. The left side shows an unheated droplet with the DNA FRET construct in the double-stranded form. The right side shows a heated droplet where the FRET construct has denatured, resulting in an increase in fluorescence.

Lab-on-a-chip technologies are attractive as they require fewer reagents, have lower detection limits, allow for parallel analyses, and can have a smaller footprint.

"Integration of various laboratory functions onto microchips has been intensely studied for many years," explained Rashid Bashir, an Abel Bliss Professor of electrical and computer engineering and of bioengineering at Illinois. "Further advances of these technologies require the ability to integrate additional elements, such as the miniaturized heating element, and the ability to integrate heating elements in a massively parallel format compatible with silicon technology.

"In this work, we demonstrated that we can heat nanoliter volume droplets, individually and in an array, using VLSI silicon based devices, up to temperatures that make it interesting to do various biochemical reactions within these droplets."

"Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches," said Eric Salm, first author of the paper, "Ultralocalized thermal reactions in subnanoliter droplets-in-air," published in the Proceedings of the National Academy of Science (PNAS) on February 12.

According to Salm, approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space multiplex reactions on a single integrated circuit. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products.

"This technology makes it possible to do cell lysing and nucleic acid amplification reactions within these individual droplets -- the droplets are the reaction vessels or cuvettes that can be individually heated," Salm added.

"We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection," said Bashir, who is director of the Micro and Nanotechnology Laboratory at Illinois. "This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules.

"Notably," Bashir added, "our miniaturized heater could also function as dual heater/sensor elements, as these silicon-on-insulator nanowire or nanoribbon structures have been used to detect DNA, proteins, pH, and pyrophosphates.

By using microfabrication techniques and incorporating the unique design of transistor-based heating with individual reaction volumes, 'laboratory-on-a-chip' technologies can be scaled down to 'laboratory-on-a-transistor' technologies as sensor/heater hybrids that could be used for point-of-care diagnostics."

In addition to Salm and Bashir, co-authors of the study included Carlos Duarte Guevara, Piyush Dak, Brian Ross Dorvel, and Bobby Reddy, Jr. at the University of Illinois; and Muhammad Ashraf Alam, Birck Nanotechnology Center and the School of Electrical and Computer Engineering at Purdue University.


Story Source:

The above story is based on materials provided by University of Illinois College of Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Salm, C. D. Guevara, P. Dak, B. R. Dorvel, B. Reddy, M. A. Alam, R. Bashir. Ultralocalized thermal reactions in subnanoliter droplets-in-air. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1219639110

Cite This Page:

University of Illinois College of Engineering. "Building a biochemistry lab on a chip." ScienceDaily. ScienceDaily, 12 February 2013. <www.sciencedaily.com/releases/2013/02/130212132007.htm>.
University of Illinois College of Engineering. (2013, February 12). Building a biochemistry lab on a chip. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2013/02/130212132007.htm
University of Illinois College of Engineering. "Building a biochemistry lab on a chip." ScienceDaily. www.sciencedaily.com/releases/2013/02/130212132007.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) — The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) — A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) — President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins