Featured Research

from universities, journals, and other organizations

Combo of Avastin, second drug shows promise fighting brain cancer

Date:
February 14, 2013
Source:
Mayo Clinic
Summary:
The drug bevacizumab, also known by the trade name Avastin, shrinks tumors briefly in patients with an aggressive brain cancer known as glioblastoma multiforme, but then they often grow again and spread throughout the brain for reasons no one previously has understood. Now, researchers have found out why this happens.

The drug bevacizumab, also known by the trade name Avastin, shrinks tumors briefly in patients with an aggressive brain cancer known as glioblastoma multiforme, but then they often grow again and spread throughout the brain for reasons no one previously has understood. Now, Mayo Clinic researchers have found out why this happens. They have also discovered that pairing Avastin with another cancer drug, dasatinib, can stop that lethal spread. Dasatinib is approved for use in several blood cancers.

Related Articles


The findings, based on an animal study, are detailed in the Feb. 14 online issue of PLOS ONE. Based on those results, Mayo Clinic has already conducted a phase I clinical trial testing a combination of bevacizumab and dasatinib in glioblastoma patients whose other therapies failed. Mayo is now carrying out a randomized phase II study of 100 patients through Alliance for Clinical Trials in Oncology, a clinical trials network supported by the National Cancer Institute.

"We are very encouraged. This finding could potentially benefit many cancer patients," says co-author Panos Z. Anastasiadis, Ph.D., chair of the Department of Cancer Biology at Mayo Clinic in Florida. Working with him were researchers and oncologists from Mayo Clinic campuses in Florida and Minnesota.

The research began after Dr. Anastasiadis, a basic scientist who studies cell adhesion and migration, gave a seminar to a group of oncologists who treat brain tumors. The issue of bevacizumab-induced invasion was brought up and a collaboration to study it was quickly set up and funded by the Mayo Clinic Specialized Program of Research Excellence (SPORE) grant for brain cancer, one of only four in the country.

The issue of bevacizumab's induced aggressiveness is not limited to brain cancer, Dr. Anastasiadis says.

"While Avastin offers clear benefit in some patients, oncologists have noted that when cancers of many types recur after use of Avastin, they become aggressive and invasive," he says.

The team discovered that as brain tumors become more aggressive after use of bevacizumab in mice, the cancers begin inducing a family of kinases known as Src, which then activate proteins found at the edge of brain tumors. These proteins essentially give the tumor cells "legs" upon which to crawl away and find a new source of nutrition, Dr. Anastasiadis says.

"Anti-angiogenesis drugs like Avastin deprive tumor cells of blood nutrients, so the tumors shrink initially, but we believe that this deprivation acts like a switch to turn on proteins that help the cancer cells migrate to other parts of the brain in search of blood," he says. "In short, if Avastin does not allow a tumor to make new blood vessels to feed it, the tumor will move to other existing blood vessels."

The researchers then tested dasatinib, a drug that inhibits Src kinases. They found that while use of bevacizumab or dasatinib alone did not provide much benefit in mouse models of human glioblastoma, use of both together shrank tumors and blocked any subsequent spread.

"If you block that migration, the cells are forced to stick together and hopefully die by lack of nutrition," Dr. Anastasiadis says.

Researchers next will work to identify which patients benefit the most from this new treatment, which do not, and why.

The study was funded by National Institutes of Health grants R01CA100467and R01NS069753.


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Journal Reference:

  1. Deborah Huveldt, Laura J. Lewis-Tuffin, Brett L. Carlson, Mark A. Schroeder, Fausto Rodriguez, Caterina Giannini, Evanthia Galanis, Jann N. Sarkaria, Panos Z. Anastasiadis. Targeting Src Family Kinases Inhibits Bevacizumab-Induced Glioma Cell Invasion. PLoS ONE, 2013; 8 (2): e56505 DOI: 10.1371/journal.pone.0056505

Cite This Page:

Mayo Clinic. "Combo of Avastin, second drug shows promise fighting brain cancer." ScienceDaily. ScienceDaily, 14 February 2013. <www.sciencedaily.com/releases/2013/02/130214194111.htm>.
Mayo Clinic. (2013, February 14). Combo of Avastin, second drug shows promise fighting brain cancer. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/02/130214194111.htm
Mayo Clinic. "Combo of Avastin, second drug shows promise fighting brain cancer." ScienceDaily. www.sciencedaily.com/releases/2013/02/130214194111.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins