Featured Research

from universities, journals, and other organizations

First signals from brain nerve cells with ultrathin nanowires

Date:
February 20, 2013
Source:
Lund University
Summary:
Electrodes implanted in the brain are currently in use for research and also to treat diseases such as Parkinson's. However, their use has been limited by their size. Researchers have now, for the first time, succeeded in implanting an ultrathin nanowire-based electrode and capturing signals from the nerve cells in the brain of a laboratory animal.

Electrodes implanted in the brain are currently in use for research and also to treat diseases such as Parkinson's. However, their use has been limited by their size. At Lund University in Sweden, researchers have, for the first time, succeeded in implanting an ultrathin nanowire-based electrode and capturing signals from the nerve cells in the brain of a laboratory animal.

Related Articles


The researchers work at Lund University's Neuronano Research Centre in an interdisciplinary collaboration between experts in subjects including neurophysiology, biomaterials, electrical measurements and nanotechnology. Their electrode is composed of a group of nanowires, each of which measures only 200 nanometres (billionths of a metre) in diameter.

Such thin electrodes have previously only been used in experiments with cell cultures.

"Carrying out experiments on a living animal is much more difficult. We are pleased that we have succeeded in developing a functioning nano-electrode, getting it into place and capturing signals from nerve cells," says Professor Jens Schouenborg, who is head of the Neuronano Research Centre.

He sees this as a real breakthrough, but also as only a step on the way. The research group has already worked for several years to develop electrodes that are thin and flexible enough not to disturb the brain tissue, and with material that does not irritate the cells nearby. They now have the first evidence that it is possible to obtain useful nerve signals from nanometre-sized electrodes.

The research will now take a number of directions. The researchers want to try and reduce the size of the base to which the nanowires are attached, improve the connection between the electrode and the electronics that receive the signals from the nerve cells, and experiment with the surface structure of the electrodes to see what produces the best signals without damaging the brain cells.

"In the future, we hope to be able to make electrodes with nanostructured surfaces that are adapted to the various parts of the nerve cells -- parts that are no bigger than a few billionths of a metre. Then we could tailor-make each electrode based on where it is going to be placed and what signals it is to capture or emit," says Jens Schouenborg.

When an electrode is inserted into the brain of a patient or a laboratory animal, it is generally anchored to the skull. This means that it doesn't move smoothly with the brain, which floats inside the skull, but rather rubs against the surrounding tissue, which in the long term causes the signals to deteriorate. The Lund group's electrodes will instead be anchored by their surface structure.

"With the right pattern on the surface, they will stay in place yet still move with the body -- and the brain -- thereby opening up for long-term monitoring of neurons," explains Jens Schouenborg.

He praises the collaboration between medics, physicists and others at the Neuronano Research Centre, and mentions physicist Dmitry B. Suyatin in particular. He is the principal author of the article which the researchers have now published in the international journal PLOS ONE.

The overall goal of the Neuronano Research Centre is to develop electrodes that can be inserted into the brain to study learning, pain and other mechanisms, and, in the long term, to treat conditions such as chronic pain, depression and Parkinson's disease.

The article in PLOS ONE can be found at www.plosone.org by searching for Schouenborg.

Jens Schouenborg can be contacted on Jens.Schouenborg@med.lu.se or tel. +46 46 222 77 52, mob. +46 702 924572. Photographs of Jens Schouenborg are available in the Lund University media bank, https://bildweb.srv.lu.se/login/.


Story Source:

The above story is based on materials provided by Lund University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dmitry B. Suyatin, Lars Wallman, Jonas Thelin, Christelle N. Prinz, Henrik Jφrntell, Lars Samuelson, Lars Montelius, Jens Schouenborg. Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain. PLoS ONE, 2013; 8 (2): e56673 DOI: 10.1371/journal.pone.0056673

Cite This Page:

Lund University. "First signals from brain nerve cells with ultrathin nanowires." ScienceDaily. ScienceDaily, 20 February 2013. <www.sciencedaily.com/releases/2013/02/130220084440.htm>.
Lund University. (2013, February 20). First signals from brain nerve cells with ultrathin nanowires. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2013/02/130220084440.htm
Lund University. "First signals from brain nerve cells with ultrathin nanowires." ScienceDaily. www.sciencedaily.com/releases/2013/02/130220084440.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former NFL Players Donate Brains to Science

Former NFL Players Donate Brains to Science

Reuters - US Online Video (Mar. 3, 2015) — Super Bowl champions Sidney Rice and Steve Weatherford donate their brains, post-mortem, to scientific research into repetitive brain trauma. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Alzheimer's Protein Plaque Found In 20-Year-Olds

Alzheimer's Protein Plaque Found In 20-Year-Olds

Newsy (Mar. 3, 2015) — Researchers found an abnormal protein associated with Alzheimer&apos;s disease in the brains of 20-year-olds. Video provided by Newsy
Powered by NewsLook.com
This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) — Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) — Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins