Featured Research

from universities, journals, and other organizations

Earthquakes in small laboratory samples

Date:
February 21, 2013
Source:
Universidad de Barcelona
Summary:
Mechanical failure of materials is a complex phenomenon underlying many accidents and natural disasters ranging from the fracture of small devices to earthquakes. Despite the vast separation of spatial, temporal, energy, and strain-rate scales, and the differences in geometry, it has been proposed that laboratory experiments on brittle fracture in heterogeneous materials can be a model for earthquake occurrence.

Mechanical failure of materials is a complex phenomenon underlying many accidents and natural disasters ranging from the fracture of small devices to earthquakes. Despite the vast separation of spatial, temporal, energy, and strain-rate scales, and the differences in geometry, it has been proposed that laboratory experiments on brittle fracture in heterogeneous materials can be a model for earthquake occurrence.

A study led by researchers from the University of Barcelona, and published on the journal Physical Review Letters, has carried out experiments with a material loaded under compression that reproduces the four main statistical laws of seismicity: the Gutenberg-Ritcher law, the Omori's law, the distribution of waiting times between consecutive events and the productivity law.

The researcher Eduard Vives, from the Faculty of Physics of the UB, led the research in which collaborated several researchers from the Faculty, Xavier Illa, Antoni Planes and Jordi Baró (the main author), as well as Álvaro Corral, from the Centre for Mathematical Research (CERCA -- Government of Catalonia), and researchers from the University of Cambridge, the University of Viena and the Institute for Scientific and Technological Research of San Luis Potosi (Mexico).

The material, analyzed by means of a device developed by the Materials Technological Unit of the Scientific and Technological Centers of the UB, is a porous glass (40 % porosity), designed for industrial applications, and named Vycor®. The sample, about 5mm, was introduced between two plates and subjected to uniaxial compression that increases linearly until the sample fragments into pieces. Acoustic sensors were place on the compression plates. They will function as seismographs which measure ultrasonic acoustic waves and detect sample's fractures.

"The experiment carried out simulates the emergence of a new fault," explains the UB researcher Eduard Vives. "By this means -- he continues -- , we observed time distribution, which at the laboratory corresponds to some hours and in earthquakes to thousands of years." On the contrary, seismology study the space statistical changes considering the data obtained from high seismic activity areas, as California, and low activity ones. According to the researcher, "this symmetry in space and time reveals that it is probable that earthquakes behavior corresponds to any kind of self-organized criticality -- as some theories state -- , and if it could be proved, it would be a great advance to apply existent theories.

Several works have previously tried to establish comparisons between earthquakes and laboratory fracture of materials, mainly using rocks, but results were not completely reliable, as they do not reproduce all the properties of earthquakes. "This material allows to carried out experiments that control several parameters, such as or magnitude or speed," concludes Vives.

Four laws of statistical seismology

The results of the experiments performed with this material fulfill the four fundamental laws of statistical seismology. On the one hand, the energy detected by acoustic emissions varies as the Gutenberg-Ritcher law affirms; this law states that the number of earthquakes as a function of their radiated energy decreases as a power law.

To get a general idea of the different scales, it is important to remember that a big earthquake (magnitude 8) equals 1,000 Hiroshima bombs, whereas the maximum energy measured in the laboratory equals the fission energy of one uranium atom. This different magnitude corresponds, approximately, to a factor of 1027.

Another experiment made with this material studied the number of aftershocks produced after a big fracture and it has been observed that it decays with time, so the tendency to follow Omori's law is clear. "Laboratory maximum rate of aftershocks with time corresponds to some hours, whereas in earthquakes it last more than one hundred years," remarks the UB researcher.

The third law of statistical seismology is the one related to waiting times, which relates the time between two consecutive earthquakes. In this case, laboratory results obtained were compared to the ones got from the earthquakes happened in Southern California, and "although different scales, similarity is higher," affirms Vives. Finally, the productivity law was also proved, which relates the rate of aftershocks triggered by a mainshock to its magnitude: larger-magnitude earthquakes produce on average more aftershocks.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jordi Baró, Álvaro Corral, Xavier Illa, Antoni Planes, Ekhard K. H. Salje, Wilfried Schranz, Daniel E. Soto-Parra, Eduard Vives. Statistical Similarity between the Compression of a Porous Material and Earthquakes. Physical Review Letters, 2013; 110 (8) DOI: 10.1103/PhysRevLett.110.088702

Cite This Page:

Universidad de Barcelona. "Earthquakes in small laboratory samples." ScienceDaily. ScienceDaily, 21 February 2013. <www.sciencedaily.com/releases/2013/02/130221084714.htm>.
Universidad de Barcelona. (2013, February 21). Earthquakes in small laboratory samples. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/02/130221084714.htm
Universidad de Barcelona. "Earthquakes in small laboratory samples." ScienceDaily. www.sciencedaily.com/releases/2013/02/130221084714.htm (accessed July 30, 2014).

Share This




More Earth & Climate News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) — Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins