Featured Research

from universities, journals, and other organizations

Molecular coordination in evolution

Date:
March 5, 2013
Source:
Centro Nacional de Investigaciones Oncologicas (CNIO)
Summary:
Spanish researchers have published a review on the latest computational methods that, based on evolutionary principles, are revolutionizing the field of analysis and prediction of protein structure, function and protein-protein interactions, as well as the short- and long-term expectations for the field.

A CNIO team, led by Alfonso Valencia, has revised the latest methodologies for studying the evolution and interaction of proteins, as well as future applications for selective drug development.

Spanish National Cancer Research Centre (CNIO) researchers Alfonso Valencia, Director of the Structural Biology and Biocomputing Programme and David de Juan, jointly with Florencio Pazos, from the Spanish National Centre for Biotechnology (CNB-CSIC), publish a review on the latest computational methods that, based on evolutionary principles, are revolutionising the field of analysis and prediction of protein structure, function and protein-protein interactions, as well as the short- and long-term expectations for the field.

"The computational and mathematical analysis tools that study how proteins evolve in a coordinated fashion -- a process known as molecular coevolution -- have undergone important changes over the past few years," explains Valencia.

This revolution in the study of microscale evolution is allowing researchers to predict interactions between proteins and to understand the structural changes that take place in these molecules. It also represents the basis for understanding how mutations caused by diseases such as cancer or neurodegenerative disease affect their underlying molecular framework.

Proteins -- just like the different species at the macroscopic level, via competitive or symbiotic interactions -- do not act in an isolated manner but rather coordinate amongst themselves in order to carry out their functional roles. These biological relationships explain why there is a tendency in evolution to introduce coordinated changes in proteins, which allow for the preservation and modulation of these relationships.

"The development of new, more powerful and more reliable mathematical methods than those available in the 1990s is allowing us to explore these biological problems at the molecular level, and provide a deeper vision of the Darwinian process," says Valencia. "These methods based on coevolution are like a telescope, helping us to observe and understand biological and molecular processes."

More Than 20 Years Of Research Predicting Molecular Relationships

In the revision, the authors describe those mathematical methods that, based on the evolution of pairs of proteins, are capable of predicting molecular interactions at different levels of complexity.

These methods include those approaches from the 1990s that predicted contact points between proteins; those that allow us to understand binding selectivity between very similar proteins -or ones that belong to the same family- and their ligands; or even, at a deeper level of complexity, those that predict interaction networks between the thousands of proteins that make up cells.

Over the last 20 years, Valencia's team has led several lines of research related to this field, many of which are still being studied by many other groups and in which his team continues to be a world leader.

"In 2012, we published a new set of predictions on the specificity of the binding of the Ras oncogene to other proteins. The tool was based on coevolution methods that we had developed a couple of years ago, and that are now being widely explored by other groups," explains Valencia. The Ras protein family is associated with a wide spectrum of cancers, so learning the language it uses with other proteins that are important for cells might open avenues for the development of novel drugs.

The authors of the study foresee a promising future for this field, in which bioinformatics programmers, physicists, biologists and mathematicians join forces in order to describe the complexity of protein dynamics.

"In the long term, we hope that unifying these methods will help us to manipulate or create new drugs that selectively target abnormal cells and therefore reduce side effects," says de Juan.


Story Source:

The above story is based on materials provided by Centro Nacional de Investigaciones Oncologicas (CNIO). Note: Materials may be edited for content and length.


Journal Reference:

  1. David de Juan, Florencio Pazos, Alfonso Valencia. Emerging methods in protein co-evolution. Nature Reviews Genetics, 2013; DOI: 10.1038/nrg3414

Cite This Page:

Centro Nacional de Investigaciones Oncologicas (CNIO). "Molecular coordination in evolution." ScienceDaily. ScienceDaily, 5 March 2013. <www.sciencedaily.com/releases/2013/03/130305080743.htm>.
Centro Nacional de Investigaciones Oncologicas (CNIO). (2013, March 5). Molecular coordination in evolution. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/03/130305080743.htm
Centro Nacional de Investigaciones Oncologicas (CNIO). "Molecular coordination in evolution." ScienceDaily. www.sciencedaily.com/releases/2013/03/130305080743.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins