Featured Research

from universities, journals, and other organizations

Chemists develop efficient material for carbon capture

Date:
March 5, 2013
Source:
University of South Florida (USF Health)
Summary:
Chemists have discovered a more efficient, less expensive and reusable material for carbon dioxide capture and separation.

The metal-organic framework material at the center of a new discovery by chemists at the USF and KAUST is shown under a microscope. The crystals have been found to be a more efficient, less expensive and reusable material for carbon capture and separation, and is a promising breakthrough in developing better carbon-control technologies.
Credit: USF/Mike Zawortko

Chemists at the University of South Florida and King Abdullah University of Science and Technology have discovered a more efficient, less expensive and reusable material for carbon dioxide (CO2) capture and separation.

Related Articles


The breakthrough could have implications for a new generation of clean-air technologies and offers new tools for confronting the world's challenges in controlling carbon.

Publishing this month in the journal Nature, the international group of scientists has identified a previously underused material -- known as SIFSIX-1-Cu -- that offers a highly efficient mechanism for capturing CO₂.

The discovery represents more than an improvement over existing materials in terms of carbon capture, said USF Chemistry Professor Mike Zaworotko, noting that the material also is highly-effective at carbon capture even in the presence of water vapor, a standard that other materials have not been able to meet. This makes it a promising candidate for real-world applications. Water normally interferes with CO₂ capture, but the material developed in the USF-KAUST project resists it.

"I hate to use the word 'unprecedented' but we have something unprecedented," Zaworotko said. "We sort of hit a sweet spot in terms of properties."

The discovery addresses one the biggest challenges of capturing CO2 before it enters the atmosphere: energy costs associated with the separation and purification of industrial commodities currently consumes around 15 percent of global energy production. The demand for such commodities is projected to triple by 2050, the researchers note.

The problem is pronounced in capturing CO2, which in addition to its notoriety with climate change, is an impurity in natural gas, biogas and other gas streams, they said.

The material is a crystal whose atoms form a three-dimensional lattice with holes that snare molecules of CO2 but allow other molecules in air to pass. SIFSIX-1-Cu is an adaptation of a material created more than 15 years ago and is named after the chemical component that leads to the special properties; its chemical name is hexafluorosilicate.

Porous SIFSIX materials are built from combinations of inorganic and organic chemical building blocks and are part of a general class of materials known as Metal-Organic Materials, or "MOMs."

The breakthrough is several years in the making and began with an undergraduate research project conducted by USF student Stephen Burd under Zaworotko's supervision. Now a graduate student in chemistry, Burd's initial testing of the material and discovery of its high-selectivity for CO2 then grew to involve an international research group involving USF chemists Brian Space, Shengqian Ma, Mohamed Eddaoudi (who is also a faculty member at KAUST) and graduate collaborator Patrick Nugent.

The research facilities at KAUST in Saudi Arabia combined with the multidisciplinary expertise in Eddaoudi's research group -- which includes researchers Youssef Belmabkhout, Amy Cairns and Ryan Luebke -- allowed the design of unique experiments that permitted the sorption (the physical and chemical process by which substances attach to each other) properties of this class of materials to be unveiled.

To confirm their findings, the researchers used supercomputer simulations in the National Science Foundation's XSEDE network.

"We work with the experimental groups in a back-and-forth process," Space said. "We tried to explain their data, and our results give them hints on how to change the way the material works."

Space's team used several supercomputers in the National Science Foundation's XSEDE network for this work. They initially used Pittsburgh Supercomputing Center's Blacklight to simulate the behavior of small numbers of gas molecules with each other and with the MOM material.

Predicting the exact behavior of even small numbers of molecules requires a huge amount of computer memory -- more than one terabyte, greater than the RAM memory in a thousand brand-new iPads. Such calculations are a specialty of Blacklight, the largest "shared memory" computer in the world. The researchers then used the Blacklight results to simulate the behavior of the gasses and the MOMs in bulk on XSEDE computers Ranger, at the Texas Advanced Computing Center, and Trestles, at the San Diego Supercomputer Center.

The group believes the material has three potentially significant applications: carbon-capture for coal-burning energy plants; purification of methane in natural gas wells; and the advancement of clean-coal technology. Some 20 to 30 percent of the power output at a clean-coal plant is consumed by cleaning process. The new material could make those plants more efficient and put more power into the grid, the scientists predict.

The next step is to collaborate with engineers to determine how the materials can be manufactured and implemented for real-world uses.


Story Source:

The above story is based on materials provided by University of South Florida (USF Health). The original article was written by Vickie Chachere. Note: Materials may be edited for content and length.


Journal Reference:

  1. Patrick Nugent, Youssef Belmabkhout, Stephen D. Burd, Amy J. Cairns, Ryan Luebke, Katherine Forrest, Tony Pham, Shengqian Ma, Brian Space, Lukasz Wojtas, Mohamed Eddaoudi, Michael J. Zaworotko. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013; 495 (7439): 80 DOI: 10.1038/nature11893

Cite This Page:

University of South Florida (USF Health). "Chemists develop efficient material for carbon capture." ScienceDaily. ScienceDaily, 5 March 2013. <www.sciencedaily.com/releases/2013/03/130305100931.htm>.
University of South Florida (USF Health). (2013, March 5). Chemists develop efficient material for carbon capture. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2013/03/130305100931.htm
University of South Florida (USF Health). "Chemists develop efficient material for carbon capture." ScienceDaily. www.sciencedaily.com/releases/2013/03/130305100931.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins