Featured Research

from universities, journals, and other organizations

Polo takes the bait: A better 'mousetrap' discovered in fruit flies might stop a human cancer-driving kinase in its tracks

Date:
March 13, 2013
Source:
Stowers Institute for Medical Research
Summary:
A seemingly obscure gene in the female fruit fly that is only active in cells that will become eggs has led researchers to the discovery of a atypical protein that lures, traps, and inactivates the powerful Polo kinase, widely considered the master regulator of cell division. Its human homolog, Polo-like kinase-1 (Plk1), is misregulated in many types of cancer.

Top: Fruit fly oocytes with fully functional Mtrm protein produce fully formed spindles. Bottom: Without functional Mtrm protein, oocytes suffer catastrophic destruction of chromosomes and other structures required for cell division. DNA is shown in blue, the meiotic spindle in red.
Credit: Image courtesy of Amanda Bonner, Stowers Institute for Medical Research

A seemingly obscure gene in the female fruit fly that is only active in cells that will become eggs has led researchers at the Stowers Institute for Medical Research to the discovery of a atypical protein that lures, traps, and inactivates the powerful Polo kinase, widely considered the master regulator of cell division. Its human homolog, Polo-like kinase-1 (Plk1), is misregulated in many types of cancer.

Related Articles


Stowers Investigator and senior author R. Scott Hawley, Ph.D., hopes that this highly selective kinase trap might give drug developers, who are working to inhibit Polo's crucial role in driving the multiplication of cancer cells, a new method to inactivate Polo without blocking other vital kinases in normal cells. "Our discovery will give people who do drug discovery a new way of thinking about inhibitors for Polo kinase," says Hawley. "At least that's my hope."

In a paper published in this week's online edition of the Proceedings of the National Academy of Sciences (PNAS), the Stowers researchers reveal in detail how Matrimony (Mtrm) stops the Polo kinase in its tracks in egg cells in the fruit fly Drosophila melanogaster. Hawley calls the most likely method by which Mtrm might bind and repress Polo the "mousetrap model." The Matrimony protein, which is expressed only in developing oocytes or egg cells, offers the Polo kinase "cheese" at its N-terminal end in the form of three phosphorylated amino acids that resemble Polo's favored canonical binding sites: phospho-serine or phospho-threonine residues.

Hawley explains, "The way we think of it, the N-terminal region of Matrimony serves as bait. To Polo, it looks like a canonical binding site with three such residues, saying 'Come look at me. I've got a phosphate and I'm a serine. Or I'm a threonine and I've got a phosphate,' because that's what Polo wants." As soon as Polo takes the bait, the C-terminal end of Matrimony wraps around Polo and represses its function. If the N-terminal phosphates are the cheese in the mousetrap, the C-terminus would be the lever. "It springs, and Polo is trapped and repressed," he says.

"Polo is at the top of the regulatory hierarchy in almost all dividing cells," Hawley continues. "It phosphorylates targets that either phosphorylate or dephosphorylate other targets in every regulatory pathway in cell division. The fact that egg cells need to shut down Polo function to divide is a fascinating exception to this rule."

Hawley discovered the Matrimony gene in 2003. Over time, the Hawley lab learned that Mtrm was a critical player in the cell divisions that occur as an egg is being made. Using fly genetics, the researchers knocked out one and then both copies of the Mtrm gene in female flies. With one functioning Mtrm gene, the oocytes could make it through the two rounds of meiosis absolutely required for haploid reproduction, albeit with a high risk of chromosome defects. With both copies of Mtrm disabled, the oocyte suffered catastrophic destruction of chromosomes and other structures required for cell division. Yet, Mtrm also turned out to be a rare example in Drosophila of a protein that can stably bind (and turn off) Polo kinase.

Mtrm seemed to be facilitating meiotic cell division by shutting down Polo. But how did the Mtrm protein manage to slow Polo and stop its action? Answering that question took seven years. According to Hawley, it required important collaborations with the Stowers Institute's core facility in proteomics to characterize the Mtrm::Polo interaction and with the Stowers imaging facility to use an advanced imaging technology to follow the interaction of the two proteins in living oocytes. The project was initially started by S. Kendall Smith, an M.D.-Ph.D. student from the University of Kansas Medical School. After Smith graduated, Amanda Bonner, a research technician, assumed full responsibility for guiding the project and bringing it to its completion.

The project's success helped Bonner transition from her position as a technician in Hawley's lab to a graduate student in the first class of the new Stowers graduate school. The experimental results speak for themselves, she says. "The important thing was finding a small protein that can inhibit Polo. It provides some real therapeutic possibilities because Polo is misregulated in so many types of cancer. To find something small and specific to Polo that doesn't interact with anything else is pretty exciting."

For a basic researcher like Hawley, making a discovery that might have direct therapeutic impact is doubly exciting. "We are a Drosophila genetics lab, but there are lots of people out there in drug discovery working on Polo. I'm hoping that someone like that will read this and my other papers and think, 'I wonder if I can use this as a means of turning down Polo kinase'." Making a basic discovery about cancer is thrilling in another way for Hawley. "I have been funded by the American Cancer Society for almost 26 years, and I've been an American Cancer Society Research Professor for the last nine years. During that time, I think my contributions to chromosome biology have added to basic research that helps us understand how tumor cells divide. Now, I've actually done something that has a practical application."

Researchers who also contributed to the work include Stacie E. Hughes, Jennifer A. Chisholm, Brian D. Slaughter, Jay R. Unruh, Kimberly A. Collins, Jennifer M. Friederichs, Laurence Florens, Selene K. Swanson, Marissa C. Pelot, Danny E. Miller, Michael P. Washburn, Sue L. Jaspersen, all at the Stowers Institute for Medical Research.

The work was funded by the Stowers Institute for Medical Research and the American Cancer Society.


Story Source:

The above story is based on materials provided by Stowers Institute for Medical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. M. Bonner, S. E. Hughes, J. A. Chisholm, S. K. Smith, B. D. Slaughter, J. R. Unruh, K. A. Collins, J. M. Friederichs, L. Florens, S. K. Swanson, M. C. Pelot, D. E. Miller, M. P. Washburn, S. L. Jaspersen, R. S. Hawley. PNAS Plus: Binding of Drosophila Polo kinase to its regulator Matrimony is noncanonical and involves two separate functional domains. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1301690110

Cite This Page:

Stowers Institute for Medical Research. "Polo takes the bait: A better 'mousetrap' discovered in fruit flies might stop a human cancer-driving kinase in its tracks." ScienceDaily. ScienceDaily, 13 March 2013. <www.sciencedaily.com/releases/2013/03/130313123519.htm>.
Stowers Institute for Medical Research. (2013, March 13). Polo takes the bait: A better 'mousetrap' discovered in fruit flies might stop a human cancer-driving kinase in its tracks. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2013/03/130313123519.htm
Stowers Institute for Medical Research. "Polo takes the bait: A better 'mousetrap' discovered in fruit flies might stop a human cancer-driving kinase in its tracks." ScienceDaily. www.sciencedaily.com/releases/2013/03/130313123519.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins