Featured Research

from universities, journals, and other organizations

Molecule's structure reveals new therapeutic opportunities for rare diabetes

Date:
March 13, 2013
Source:
Sanford-Burnham Medical Research Institute
Summary:
Researchers have determined the 3-D structure of a protein called HNF-4. People with mature onset diabetes of the young (MODY1) have inherited mutations in the HNF-4 protein. This first-ever look at HNF-4's full structure uncovers new information about how it functions. The study also reveals new pockets in the protein that could be targeted with therapeutic drugs aimed at alleviating MODY1.

3-D structure of HNF-4α, a protein mutated in MODY1, a rare, inherited form of diabetes, reveals new pockets that could be targeted with therapeutic drugs
Credit: Image courtesy of Sanford-Burnham Medical Research Institute

Researchers have determined the complete three-dimensional structure of a protein called HNF-4α. HNF-4α controls gene expression in the liver and pancreas, switching genes on or off as needed. People with mature onset diabetes of the young (MODY1), a rare form of the disease, have inherited mutations in the HNF-4α protein. This first-ever look at HNF-4α's full structure, published today in Nature, uncovers new information about how it functions. The study also reveals new pockets in the protein that could be targeted with therapeutic drugs aimed at alleviating MODY1.

"Previous structural studies of HNF-4α and related nuclear receptors only revealed smaller, isolated fragments of these proteins," said Fraydoon Rastinejad, Ph.D., professor in Sanford-Burnham's Diabetes and Obesity Research Center, located at the Institute's Lake Nona campus in Orlando, Fla., and senior author of the study. "Because those studies looked only at separate pieces of HNF-4α, many people suspected there was no coordination between different regions of the protein. But we showed those assumptions are incorrect. HNF-4α's domains are highly organized in a way that has implications for our understanding of MODY1 and the development of treatments for the disease."

Implications for MODY1

Rastinejad's study helps explain why inherited genetic mutations that alter HNF-4α protein structure can be so damaging. The mutations that lead to MODY1 usually occur within a very small, specific region of the HNF-4α protein that's separate from the DNA-binding region. Rastinejad and his team found that, despite their distant location, the mutations telegraph a signal to the DNA-binding region, causing HNF-4α to malfunction and thus MODY1 to develop.

The team also discovered new pockets in the HNF-4α protein that could be targeted with therapeutic drugs. Like other nuclear receptors, HNF-4α has a pocket that binds natural signaling molecules or could be targeted with synthetic drugs. But this new study revealed several other pockets in other regions of the protein. And because they also found cross-communication among different regions on the protein, the team believes that a drug binding a distant pocket could still influence DNA binding.

"We're now working with our colleagues in Sanford-Burnham's Conrad Prebys Center for Chemical Genomics to screen a large chemical library -- a collection of around 300,000 compounds -- to find molecules that bind to these newly discovered HNF-4α sites," Rastinejad said. "We're looking for molecules that restore DNA binding in MODY1 patients. This way, even if we can't fix the mutation, we can still send a molecule to rescue the receptor's ability to tightly bind DNA."

More about HNF-4α

HNF-4α is a special type of protein called a nuclear receptor. It sits on the DNA in a cell, controlling thousands of genes by switching them on or off in response to outside signals. Nuclear receptors make good drug targets because one region is bound to DNA, while a pocket sits open on another part of the protein, just waiting to hold a signaling molecule. Therapeutic drugs can also be made to fit these pockets, switching the nuclear receptor on or off to alter gene expression.

Until this latest study, many researchers believed that most nuclear receptors are organized like beads on a string. Each bead (protein domain) has a function, but the string itself is just loose. Rastinejad and his team showed that the opposite is true. HNF-4α's domains are organized and coordinated -- a domain that receives a signal can actually transmit it to a distant site on the protein. According to Rastinejad, the domains are interconnected, talking to one another.

HNF-4α is found mostly in liver and pancreatic cells, where it turns on genes needed by those organs and keeps other, unnecessary genes off. HNF-4α helps control carbohydrate metabolism, glucose regulation, insulin production, and many other important processes. In other words, HNF-4α is what makes a liver a liver and a pancreas a pancreas.


Story Source:

The above story is based on materials provided by Sanford-Burnham Medical Research Institute. The original article was written by Heather Buschman. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vikas Chandra, Pengxiang Huang, Nalini Potluri, Dalei Wu, Youngchang Kim, Fraydoon Rastinejad. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature, 2013; DOI: 10.1038/nature11966

Cite This Page:

Sanford-Burnham Medical Research Institute. "Molecule's structure reveals new therapeutic opportunities for rare diabetes." ScienceDaily. ScienceDaily, 13 March 2013. <www.sciencedaily.com/releases/2013/03/130313142602.htm>.
Sanford-Burnham Medical Research Institute. (2013, March 13). Molecule's structure reveals new therapeutic opportunities for rare diabetes. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2013/03/130313142602.htm
Sanford-Burnham Medical Research Institute. "Molecule's structure reveals new therapeutic opportunities for rare diabetes." ScienceDaily. www.sciencedaily.com/releases/2013/03/130313142602.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins