Featured Research

from universities, journals, and other organizations

Tomatoes that mimic actions of good cholesterol created

Date:
March 19, 2013
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
Researchers have genetically engineered tomatoes to produce a peptide that mimics the actions of good cholesterol when consumed. In this early study, mice that were fed these tomatoes in freeze-dried, ground form had less inflammation and plaque build-up in their arteries.

Study with genetically engineered tomatoes. Images demonstrate growing and harvesting genetically engineered tomatoes that produce 6F, a small peptide that mimics the action of the chief protein in HDL. The tomatoes were freeze-dried and made up 2.2 percent of a high-fat diet fed to mice in the study. Note less cholesterol build-up (in red) in the artery of the mouse fed tomatoes with 6F versus the mouse that ate the high-fat diet containing 2.2 percent freeze-dried control tomatoes that did not contain 6F.
Credit: UCLA

UCLA researchers have genetically engineered tomatoes to produce a peptide that mimics the actions of good cholesterol when consumed.

Related Articles


Published in the April issue of the Journal of Lipid Research and featured on the cover, their early study found that mice that were fed these tomatoes in freeze-dried, ground form had less inflammation and plaque build-up in their arteries.

"This is one of the first examples of a peptide that acts like the main protein in good cholesterol and can be delivered by simply eating the plant," said senior author Dr. Alan M. Fogelman, executive chair of the department of medicine and director of the atherosclerosis research unit at the David Geffen School of Medicine at UCLA. "There was no need to isolate or purify the peptide -- it was fully active after the plant was eaten."

After the tomatoes were eaten, the peptide surprisingly was found to be active in the small intestine but not in the blood, suggesting that targeting the small intestine may be a new strategy to prevent diet-induced atherosclerosis, the plaque-based disease of the arteries that can lead to heart attacks and strokes.

Specifically for the study, the team genetically engineered tomatoes to produce 6F, a small peptide that mimics the action of apoA-1, the chief protein in high-density lipoprotein (HDL or "good" cholesterol). Scientists fed the tomatoes to mice that lacked the ability to remove low-density lipoprotein (LDL or "bad" cholesterol) from their blood and readily developed inflammation and atherosclerosis when consuming a high-fat diet.

The researchers found that mice that ate the peptide-enhanced tomatoes, which accounted for 2.2 percent of their Western-style, high-fat diet, had significantly lower levels of inflammation; higher paraoxonase activity, an antioxidant enzyme associated with good cholesterol; higher levels of good cholesterol; decreased lysophosphatidic acid, a tumor-promoter that accelerates plaque build-up in the arteries in animal models; and less atherosclerotic plaque.

Several hours after the mice finished eating, the intact peptide was found in the small intestine, but no intact peptide was found in the blood. According to researchers, this strongly suggests that the peptide acted in the small intestine and was then degraded to natural amino acids before being absorbed into the blood, as is the case with the other peptides and proteins in the tomato.

"It seems likely that the mechanism of action of the peptide-enhanced tomatoes involves altering lipid metabolism in the intestine, which positively impacts cholesterol," said the study's corresponding author, Srinavasa T. Reddy, a UCLA professor of medicine and of molecular and medical pharmacology.

Previous studies performed by Fogelman's lab and other researchers around the world in animal models of disease have suggested that a large number of conditions with an inflammatory component -- not just atherosclerosis -- might benefit from treatment with an apoA-1 mimetic peptide, including Alzheimer's disease, ovarian and colon cancer, diabetes, asthma, and other disorders.

The immune system normally triggers an inflammatory response to an acute event such as injury or infection, which is part of the natural course of healing. But with many chronic diseases, inflammation becomes an abnormal, ongoing process with long-lasting deleterious effects in the body.

If the work in animal models applies to humans, said Fogelman, who is also the Castera Professor of Medicine at UCLA, consuming forms of genetically modified foods that contain apoA-1-related peptides could potentially help improve these conditions.

The peptide would be considered a drug if given by injection or in a purified pill form, but when it is a part of the fruit of a plant, it may be no different from a safety standpoint than the food in which it is contained -- and it may be better tolerated than a drug, Fogelman said. He noted that one possibility could be the development of the peptide into a nutritional supplement.

The current study and findings resulted from years of detective work in searching for an apoA-1 peptide that could be practically produced. Peptides prior to the current 6F version have required additions that can only be made by chemical synthesis. The 6F peptide does not require these additions and can therefore be produced by genetically engineering plants.

The team chose a fruit -- the tomato -- that could be eaten without requiring cooking that might break down the peptide. The researchers were able to successfully genetically express the peptide in tomato plants, and the ripened fruit was then freeze-dried and ground into powder for use in the study.

"This is one of the first examples in translational research using an edible plant as a delivery vehicle for a new approach to cholesterol," said Judith Gasson, a professor of medicine and biological chemistry, director of UCLA's Jonsson Comprehensive Cancer Center and senior associate dean for research at the Geffen School of Medicine. "We will be closely watching this novel research to see if these early studies lead to human trials."

In addition, Gasson noted that this early finding and future studies may yield important and fundamental knowledge about the role of the intestine in diet-induced inflammation and atherosclerosis.

The study was supported in part by U.S. Public Health Service Research Grants HL-30568 and HL-34343 and by the Laubisch, Castera and M.K. Grey funds at UCLA. Studies on the determination of 6F in intestinal contents and plasma were partially funded by a Network Grant from the Leducq Foundation.


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Chattopadhyay, M. Navab, G. Hough, F. Gao, D. Meriwether, V. Grijalva, J. R. Springstead, M. N. Palgunachari, R. Namiri-Kalantari, F. Su, B. J. Van Lenten, A. C. Wagner, G. .M. Anantharamaiah, R. Farias-Eisner, S. T. Reddy, A. M. Fogelman. A Novel Approach to Oral ApoA-I Mimetic Therapy. The Journal of Lipid Research, 2013; DOI: 10.1194/jlr.M033555

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "Tomatoes that mimic actions of good cholesterol created." ScienceDaily. ScienceDaily, 19 March 2013. <www.sciencedaily.com/releases/2013/03/130319144154.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2013, March 19). Tomatoes that mimic actions of good cholesterol created. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/03/130319144154.htm
University of California, Los Angeles (UCLA), Health Sciences. "Tomatoes that mimic actions of good cholesterol created." ScienceDaily. www.sciencedaily.com/releases/2013/03/130319144154.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins