Featured Research

from universities, journals, and other organizations

Embedding photovoltaic modules more quickly

Date:
April 2, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
The market for solar modules is highly competitive. For this reason, companies must save on costs, such as by using a new process. It embeds the cells twice as fast into their protective plastic sheathing -- and therefore saves time and money.

The market for solar modules is highly competitive. For this reason, companies must save on costs, such as by using a new process. It embeds the cells twice as fast into their protective plastic sheathing -- and therefore saves time and money.

Related Articles


Solar cells must endure a lot: snow, hot summer days, rain and humidity. To provide maximum protection to the cells, the manufacturers embed them in plastic, usually in ethylene vinyl acetate (EVA). The principle is that they laminate the cells in the first step. For this, they encase the cells in a plastic film and heat it up. Once the plastic is soft, the entire stack is pressed together in the laminator so that it flows well around the cells and encases them. This process vulcanizes the plastic -- in other words, it crosslinks it (meaning that a type of rubber is created). The advantage is that the material can no longer be melted once it is in this state; it is more stable and protects the cells better against mechanical and thermal stress. For the crosslinking, the solar cell plastic stack is heated in the vacuum laminator to a temperature of up to 150 degrees Celsius; this high temperature provides the "starting signal" for the crosslinking. The processing times for the vulcanizing are rather long, however the stack of cells must remain in the laminator for about 20 minutes, sometimes even longer, driving production costs up.

Less than eight minutes for laminating

The manufacturers can counteract this cost pressure on either the process or the materials side, meaning you are able to optimize the process yourself or use better materials. Scientists from the Fraunhofer Center for Silicone Photovoltaics CSP in Halle will, from now on, support manufacturers on the process side jointly with colleagues from LANXESS: "We have modified the lamination process so that it only takes about 7 to 8 minutes instead of 20 minutes. We were therefore able to reduce the duration of the total process by more than 50 percent," says Dr. Stefan Schulze, Polymer Materials Team Leader at CSP. "In comparison to the standard process we are therefore able to laminate twice as many modules on one system, which directly positively affects the production costs per module."

The researchers were inspired by printing ink for news prints, which vulcanize in a few seconds after being exposed to a UV light. The crosslinker used by LANXESS worked in the same manner -- activated by UV radiation instead of by high temperatures, it crosslinks the plastic within a few seconds while maintaining the same quality. The reason for that were the plastic films. If the usual additives are used in the plastic, then care must be taken when mixing the ingredients to always stay below the crosslinking temperature -- meaning that the mixing has to be carried out very gently. For this reason, the resulting film is often not very homogenous. "However, if we crosslink the additives using UV radiation we are able to mix aggressively. We therefore achieve homogenous films and thus an improved crosslinking of the plastic," Schulze makes clear.

The researchers at CSP developed the UV crosslinking process within the Fraunhofer Innovation Cluster SolarPlastics. They are looking for answers to the following questions: How can the process be controlled? What temperatures are required? And how much radiation is required? The LANXESS employees took care of the material, meaning the composition and the type and amount of the UV crosslinker. The CSP already has a pilot plant for crosslinking where the scientists are optimizing the four parameters -- the amount of radiation, the temperature, the height of the lamp and the feed rate at which the modules traverse under the UV lamps. "The process is operational," says Schulze. Interested manufacturers need not fear high costs for retrofitting their production facilities; only one UV lamp would have to be added.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Embedding photovoltaic modules more quickly." ScienceDaily. ScienceDaily, 2 April 2013. <www.sciencedaily.com/releases/2013/04/130402091255.htm>.
Fraunhofer-Gesellschaft. (2013, April 2). Embedding photovoltaic modules more quickly. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2013/04/130402091255.htm
Fraunhofer-Gesellschaft. "Embedding photovoltaic modules more quickly." ScienceDaily. www.sciencedaily.com/releases/2013/04/130402091255.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins