Featured Research

from universities, journals, and other organizations

Hydrogen from methane without CO2 emissions?

Date:
April 8, 2013
Source:
Karlsruhe Institute of Technology
Summary:
The production of hydrogen from methane without carbon dioxide emissions is the objective of a new project. Researchers are setting up a novel liquid-metal bubble column reactor, in which methane is decomposed into hydrogen and elemental carbon at high temperature.

The production of hydrogen from methane without carbon dioxide emissions is the objective of a project in which KIT is a major partner. At KALLA, the Karlsruhe Liquid-metal Laboratory, researchers are setting up a novel liquid-metal bubble column reactor, in which methane is decomposed into hydrogen and elemental carbon at high temperature.

In this project, KIT cooperates with the Institute for Advanced Sustainability Studies (IASS). Today, the initiator of the project and scientific director of IASS, Nobel Prize laureate Professor Carlo Rubbia, met KIT scientists working at KALLA, the Institute for Pulsed Power and Microwave Technology (IHM), and the Institute for Applied Materials -- Material Process Technology (IAM-WPT).

Energy production from fossil fuels without emissions of climate-affecting carbon dioxide -- this vision might come true through the research program "Combustion of Methane without CO2 Emissions." Since late 2012, KIT has been partner in the program that is part of the Earth, Energy, and Environment (E3) Cluster of the Institute for Advanced Sustainability Studies (IASS), Potsdam. "This is the truly pioneering experiment with the ambition of using fossils without CO2 emissions," said the scientific director of IASS and physics Nobel Prize laureate Professor Carlo Rubbia when visiting KIT today.

Hydrogen represents a promising medium for the storage and transport of energy in the future. However, it is bound in water (H2O) or hydrocarbons, such as petroleum, natural gas or coal. Consequently, the hydrogen has to be separated first. In the course of conventional separation processes, the climate-affecting greenhouse gas carbon dioxide is formed. Today's worldwide hydrogen production causes about 5% of the global CO2 emissions.

CO2-free hydrogen production at KIT will be achieved by thermal decomposition of methane in a high-temperature bubble column reactor. KIT researchers enter entirely new ground. "With this project, we have the opportunity to participate in the development of fundamentals for a completely new energy technology," explains the head of KALLA, Professor Thomas Wetzel. "If feasibility can be confirmed, sustainable production and use of hydrogen from fossil sources that would have affected the climate if they were used conventionally will be possible."

The liquid-metal bubble column reactor to be built up at KALLA in the next months is a vertical column of about half a meter in height and a few centimeters in diameter. The column is filled with liquid metal that is heated up to 1000°C. Fine methane bubbles enter the column through a porous filling at the bottom. These bubbles rise up to the surface. "At such high temperatures, the ascending methane bubbles are increasingly decomposed into hydrogen and carbon," explains Professor Thomas Wetzel. "We will study how much hydrogen can be produced by a smart process conduct."

The KIT liquid-metal bubble column reactor is based on previous work of Professor Carlo Rubbia and Professor Alberto Abánades from IASS. They studied thermal decomposition of methane in a gas-phase reactor. During this gas-phase reaction, however, the carbon formed deposited on the reactor walls. As a result, gas channels were plugged after a short time and no continuous process was possible. "In the reactor planned to be built in cooperation with the IASS colleagues, the shell of the bubbles assumes the role of the wall," explains Thomas Wetzel. "Only when the bubbles burst at the surface of the liquid metal, is carbon released. The reactor wall is constantly renewed." A similar approach was described by researchers in the team of Manuela Serban from the Argonne National Lab, USA, about ten years ago. Since then, however, this process has not been developed any further.

Following the setup of the test reactor, KIT scientists will study various parameters influencing process conduct and potential hydrogen yield this year. Work at KIT will also focus on fundamental scientific aspects, for example, on the identification of reaction paths influencing the composition of the product gas flow and on possibilities of removing carbon from the reactor. In parallel, the scientists will select materials for potential future industrial reactors, study filter technology, and develop probes for a later continuous process conduct.

Karlsruhe Institute of Technology (KIT) is one of Europe's leading energy research establishments. Research, education, and innovation at KIT foster the energy turnaround and reorganization of the energy system in Germany. KIT links excellent competences in engineering and science with know-how in economics, the humanities, and social science as well as law. The activities of the KIT Energy Center are organized in seven topics: Energy conversion, renewable energies, energy storage and distribution, efficient energy use, fusion technology, nuclear power and safety, and energy systems analysis. Clear priorities lie in the areas of energy efficiency and renewable energies, energy storage technologies and grids, electromobility, and enhanced international cooperation in research.

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Karlsruhe Institute of Technology. "Hydrogen from methane without CO2 emissions?." ScienceDaily. ScienceDaily, 8 April 2013. <www.sciencedaily.com/releases/2013/04/130408084900.htm>.
Karlsruhe Institute of Technology. (2013, April 8). Hydrogen from methane without CO2 emissions?. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/04/130408084900.htm
Karlsruhe Institute of Technology. "Hydrogen from methane without CO2 emissions?." ScienceDaily. www.sciencedaily.com/releases/2013/04/130408084900.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins