Featured Research

from universities, journals, and other organizations

How carbon moves within planet plays big role in planetary atmosphere formation

Date:
April 8, 2013
Source:
Brown University
Summary:
A new study suggests that the way carbon moves from within a planet to the surface plays a big role in the evolution of a planet's atmosphere. Mars, which likely released much of its carbon as methane, might have been warm enough to support liquid water.

Greenhouse effect on the Red Planet? Early on, Mars had giant active volcanoes, which would have released significant methane. Because of methane's high greenhouse potential, even a thin atmosphere might have supported liquid water.
Credit: NASA

A new study in Proceedings of the National Academy of Sciences suggests that the way carbon moves from within a planet to the surface plays a big role in the evolution of a planet's atmosphere. If Mars released much of its carbon as methane, for example, it might have been warm enough to support liquid water.

Related Articles


A new study of how carbon is trapped and released by iron-rich volcanic magma offers clues about the early atmospheric evolution on Mars and other terrestrial bodies.

The composition of a planet's atmosphere has roots deep beneath its surface. When mantle material melts to form magma, it traps subsurface carbon. As magma moves upward toward the surface and pressure decreases, that carbon is released as a gas. On Earth, carbon is trapped in magma as carbonate and degassed as carbon dioxide, a greenhouse gas that helps Earth's atmosphere trap heat from the sun. But how carbon is transferred from underground to the atmosphere in other planets -- and how that might influence greenhouse conditions -- wasn't well understood.

"We know carbon goes from the solid mantle to the liquid magma, from liquid to gas and then out," said Alberto Saal, professor of geological sciences at Brown and one of the study's authors. "We want to understand how the different carbon species that are formed in the conditions that are relevant to the planet affect the transfer."

This latest study, which also included researchers from Northwestern University and the Carnegie Institution of Washington, indicated that under conditions like those found in the mantles of Mars, the Moon and other bodies, carbon is trapped in the magmas mainly as a species called iron carbonyl and released as carbon monoxide and methane gas. Both gasses, methane especially, have high greenhouse potential.

The findings, published in the Proceedings of the National Academy of Sciences, suggest that when volcanism was widespread early in Mars' history, it may have released enough methane to keep the planet significantly warmer than it is today.

A key difference between conditions in Earth's mantle and the mantles of other terrestrial bodies is what scientists refer to as oxygen fugacity, the amount of free oxygen available to react with other elements. Earth's mantle today has a relatively high oxygen fugacity, but in bodies like the Moon and early Mars, it is very low. To find out what how that lower oxygen fugacity affects carbon transfer, the researchers set up a series of experiments using volcanic basalt similar to those found on the Moon and Mars.

They melted the volcanic rock at varying pressures, temperature, and oxygen fugacities, using a powerful spectrometer to measure how much carbon was absorbed by the melt and in what form. They found that at low oxygen fugacities, carbon was trapped as iron carbonyl, something previous research hadn't detected. At lower pressures, iron carbonyl degassed as carbon monoxide and methane.

"We found that you can dissolve in the magma more carbon at low oxygen fugacity than what was previously thought," said Diane Wetzel, a Brown graduate student and the study's lead author. "That plays a big role in the degassing of planetary interiors and in how that will then affect the evolution of atmospheres in different planetary bodies."

Early in its history, Mars was home to giant active volcanoes, which means significant amounts of methane would have been released by carbon transfer. Because of methane's greenhouse potential, which is much higher than that of carbon dioxide, the findings suggest that even a thin atmosphere early in Mars' history might have created conditions warm enough for liquid water on the surface.

Other authors on the paper were Malcolm Rutherford from Brown, Steven Jacobson from Northwestern. and Erik Hauri from the Carnegie Institution. The work was supported by NASA, the National Science Foundation, the David and Lucile Packard Foundation, and the Deep Carbon Observatory.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Diane T. Wetzel, Malcolm J. Rutherford, Steven D. Jacobsen, Erik H. Hauri, and Alberto E. Saal. Degassing of reduced carbon from planetary basalts. PNAS, April 8, 2013 DOI: 10.1073/pnas.1219266110

Cite This Page:

Brown University. "How carbon moves within planet plays big role in planetary atmosphere formation." ScienceDaily. ScienceDaily, 8 April 2013. <www.sciencedaily.com/releases/2013/04/130408152949.htm>.
Brown University. (2013, April 8). How carbon moves within planet plays big role in planetary atmosphere formation. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2013/04/130408152949.htm
Brown University. "How carbon moves within planet plays big role in planetary atmosphere formation." ScienceDaily. www.sciencedaily.com/releases/2013/04/130408152949.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) — Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
Madagascar Locust Plague Could Mean Famine For Millions

Madagascar Locust Plague Could Mean Famine For Millions

Newsy (Jan. 27, 2015) — The Food and Agriculture Organization says millions could face famine in Madagascar without more funding to finish locust eradication efforts. Video provided by Newsy
Powered by NewsLook.com
Storm Slams New England, Spares Mid-Atlantic

Storm Slams New England, Spares Mid-Atlantic

AP (Jan. 27, 2015) — A howling blizzard with wind gusts over 70 mph heaped snow on Boston along with other stretches of lower New England and Long Island on Tuesday, but failed to live up to the hype in Philadelphia and New York City. (Jan. 27) Video provided by AP
Powered by NewsLook.com
Mexico's Volcano of Fire Erupts Again

Mexico's Volcano of Fire Erupts Again

Reuters - News Video Online (Jan. 26, 2015) — A huge plume of smoke shoots into the air as activity in Mexico&apos;s Volcano of Fire picks up again. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins