Featured Research

from universities, journals, and other organizations

Peel-and-stick thin film solar cells

Date:
April 9, 2013
Source:
Hanyang University
Summary:
Scientists have fabricated peel-and-stick thin film solar cells (TFSCs). The Si wafer is clean and reusable. Moreover, as the peeled-off TFSCs from the Si wafer are thin, light-weight, and flexible, it can be attached onto any form or shape of surface like a sticker.

Peel-and-stick thin film solar cells.
Credit: Image courtesy of Hanyang University

Hanyang University in collaboration with Stanford University has succeeded in fabricating peel-and-stick thin film solar cells (TFSCs). The Si wafer is clean and reusable. Moreover, as the peeled-off TFSCs from the Si wafer are thin, light-weight, and flexible, it can be attached onto any form or shape of surface like a sticker.

Professor Dong Rip Kim of the Department of Mechanical Engineering has succeeded in fabricating peel-and-stick thin film solar cells (TFSCs) with the collaboration of Stanford team led by Professor Xiaolin Zheng. This method makes possible the overcoming of hardships related to working with traditional solar cells, namely the lack of handling, high manufacturing cost, and limited flexibility while maintaining performance.

Kim is currently in charge of the Hanyang University Nanotechnology for Energy Conversion Lab. His research interests are solar cells, energy conversion devices using nanomaterials, flexible electronics, nanoelectronics, and nanosensors. Among Kim's recent publications are "Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates" in the journal of Scientific Reports, "Shrinking and Growing: Grain Boundary Density Reduction for Efficient Polysilicon Thin-Film Solar Cells" in the journal of Nano Letters, and "Thermal Conductivity in Porous Silicon Nanowire Arrays" in the journal of Nanoscale Research Letters.

Most solar cells are now fabricated on Si wafers or glass substrates. The biggest issue for commercialized solar cells is their high price. In addition, due to their fabrication on the Si wafer, the cells are rigid and heavy while being fragile. While they are recognized as one of the most crucial alternative sources of energy, such limitations have prevented wider application of solar cells.

Fortunately, Kim and his colleagues devised an idea to produce a light-weight flexible solar cell on nonconventional or universal substrates that overcomes the limitations of traditional methods while maintaining performance. By doing so, Kim believed that his new cells could broaden the application spectrum of solar cells.

The success comes from using the same traditional fabrication method while adding a metal layer between the fabricated a-Si:H TFSCs and the underlying Si/SiO2 wafer. After numerous attempts and trials, Kim and his colleagues found a method to reliably peel the fabricated TFSCs from the Si/SO2 wafer by using water penetration between the metal layer and the SiO2 layer on the wafer.

The Si wafer is clean and reusable, which is a big cost-saving factor for solar cells. Moreover, as the peeled-off TFSCs from the Si wafer are thin, light-weight, and flexible, it can be attached onto any form or shape of surface like a sticker. Although others have successfully fabricated TFSCs on flexible substrates to realize the flexible solar cells, many efforts have been driven to modify the existing processes for solar cell fabrication, due to the rubber-like properties of the flexible substrates. Importantly, Kim and his colleagues made the light-weight flexible solar cells without modifying any existing fabrication processes, and their performance was maintained even after the transfer. Kim states that their novel technology is not limited to the solar cells only. Numerous other appliances like flexible displays can adopt his method.

"I will continue to focus on creating highly efficient but low costing energy conversion devices with nanotechnology," Kim said. Moreover, his future research will focus on applying his method in other types of solar cells and in other applications.


Story Source:

The above story is based on materials provided by Hanyang University. The original article was written by Jisoo Lee. Note: Materials may be edited for content and length.


Journal References:

  1. Dong Rip Kim, Chi Hwan Lee, Jeffrey M. Weisse, In Sun Cho, Xiaolin Zheng. Shrinking and Growing: Grain Boundary Density Reduction for Efficient Polysilicon Thin-Film Solar Cells. Nano Letters, 2012; 12 (12): 6485 DOI: 10.1021/nl3041492
  2. Chi Hwan Lee, Dong Rip Kim, In Sun Cho, Nemeth William, Qi Wang, Xiaolin Zheng. Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates. Scientific Reports, 2012; 2 DOI: 10.1038/srep01000
  3. Jeffrey M Weisse, Amy M Marconnet, Dong Kim, Pratap M Rao, Matthew A Panzer, Kenneth E Goodson, Xiaolin Zheng. Thermal conductivity in porous silicon nanowire arrays. Nanoscale Research Letters, 2012; 7 (1): 554 DOI: 10.1186/1556-276X-7-554

Cite This Page:

Hanyang University. "Peel-and-stick thin film solar cells." ScienceDaily. ScienceDaily, 9 April 2013. <www.sciencedaily.com/releases/2013/04/130409090746.htm>.
Hanyang University. (2013, April 9). Peel-and-stick thin film solar cells. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/04/130409090746.htm
Hanyang University. "Peel-and-stick thin film solar cells." ScienceDaily. www.sciencedaily.com/releases/2013/04/130409090746.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Peel-and-Stick Solar Cells

Apr. 16, 2013 It may be possible soon to charge cell phones, change the tint on windows, or power small toys with peel-and-stick versions of solar cells, thanks to new ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins