Featured Research

from universities, journals, and other organizations

Advancing secure communications: A better single-photon emitter for quantum cryptography

Date:
April 9, 2013
Source:
University of Michigan
Summary:
In a development that could make the advanced form of secure communications known as quantum cryptography more practical, researchers have demonstrated a simpler, more efficient single-photon emitter that can be made using traditional semiconductor processing techniques.

An atomic force microscope image of a nanowire single photon emitter.
Credit: Courtesy of Pallab Bhattacharya

In a development that could make the advanced form of secure communications known as quantum cryptography more practical, University of Michigan researchers have demonstrated a simpler, more efficient single-photon emitter that can be made using traditional semiconductor processing techniques.

Single-photon emitters release one particle of light, or photon, at a time, as opposed to devices like lasers that release a stream of them. Single-photon emitters are essential for quantum cryptography, which keeps secrets safe by taking advantage of the so-called observer effect: The very act of an eavesdropper listening in jumbles the message. This is because in the quantum realm, observing a system always changes it.

For quantum cryptography to work, it's necessary to encode the message -- which could be a bank password or a piece of military intelligence, for example -- just one photon at a time. That way, the sender and the recipient will know whether anyone has tampered with the message.

While the U-M researchers didn't make the first single-photon emitter, they say their new device improves upon the current technology and is much easier to make.

"This thing is very, very simple. It is all based on silicon," said Pallab Bhattacharya, the Charles M. Vest Distinguished University Professor of Electrical Engineering and Computer Science, and the James R. Mellor Professor of Engineering.

Bhattacharya, who leads this project, is a co-author of a paper on the work published in Nature Communications on April 9.

Bhattacharya's emitter is a single nanowire made of gallium nitride with a very small region of indium gallium nitride that behaves as a quantum dot. A quantum dot is a nanostructure that can generate a bit of information. In the binary code of conventional computers, a bit is a 0 or a 1. A quantum bit can be either or both at the same time.

The semiconducting materials the new emitter is made of are commonly used in LEDs and solar cells. The researchers grew the nanowires on a wafer of silicon. Because their technique is silicon-based, the infrastructure to manufacture the emitters on a larger scale already exists. Silicon is the basis of modern electronics.

"This is a big step in that it produces the pathway to realizing a practical electrically injected single-photon emitter," Bhattacharya said.

Key enablers of the new technology are size and compactness.

"By making the diameter of the nanowire very small and by altering the composition over a very small section of it, a quantum dot is realized," Bhattacharya said. "The quantum dot emits single-photons upon electrical excitation."

The U-M emitter is fueled by electricity, rather than light -- another aspect that makes it more practical. And each photon it emits possesses the same degree of linear polarization. Polarization refers to the orientation of the electric field of a beam of light. Most other single-photon emitters release light particles with a random polarization.

"So half might have one polarization and the other half might have the other," Bhattacharya said. "So in cryptic message, if you want to code them, you would only be able to use 50 percent of the photons. With our device, you could use almost all of them."

This device operates at cold temperatures, but the researchers are working on one that operates closer to room temperature.

The paper is titled "Electrically-driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire." The first author is Saniya Deshpande, a graduate student in electrical engineering and computer science. The work is supported by the National Science Foundation. The device was fabricated at the U-M Lurie Nanofabrication Facility.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Saniya Deshpande, Junseok Heo, Ayan Das, Pallab Bhattacharya. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire. Nature Communications, 2013; 4: 1675 DOI: 10.1038/ncomms2691

Cite This Page:

University of Michigan. "Advancing secure communications: A better single-photon emitter for quantum cryptography." ScienceDaily. ScienceDaily, 9 April 2013. <www.sciencedaily.com/releases/2013/04/130409145056.htm>.
University of Michigan. (2013, April 9). Advancing secure communications: A better single-photon emitter for quantum cryptography. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/04/130409145056.htm
University of Michigan. "Advancing secure communications: A better single-photon emitter for quantum cryptography." ScienceDaily. www.sciencedaily.com/releases/2013/04/130409145056.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins