Featured Research

from universities, journals, and other organizations

Liquid on liquid goes solid

Date:
April 10, 2013
Source:
Christian-Albrechts-Universitaet zu Kiel
Summary:
Not all liquids are mixable. Researchers have investigated chemical processes with atomic resolution at the interface between two such liquids and have made an exciting discovery. They observed the formation of an ordered crystal of exactly five atomic layers between the two liquids, which acts as a foundation for growing even bigger crystals.

A Kiel based research group has discovered nano-crystals at the interface between two liquids.

Related Articles


Not all liquids are mixable. Researchers from the Institute of Experimental and Applied Physics of Kiel University (CAU) have investigated chemical processes with atomic resolution at the interface between two such liquids and have made an exciting discovery. During an experiment carried out at Germany's largest accelerator centre DESY (Deutsches Elektronen-Synchrotron) in Hamburg, they observed the formation of an ordered crystal of exactly five atomic layers between the two liquids, which acts as a foundation for growing even bigger crystals. The experiment was performed in cooperation with scientists from Israel, the USA, and DESY. The results have just been published in the scientific journal Proceedings of the National Academy of Sciences. They may result in new semiconductor and nano-particle production processes.

Everyone knows that oil and water do not mix. However, how the interface between two immiscible liquids behaves on an atomic scale is almost completely unknown up to now as it cannot be investigated at this level by most modern surface science methods. Solving this final piece of the puzzle is the aim of the team of Dr. Bridget Murphy and Professor Olaf Magnussen from the Physics Department at Kiel University. To do this the scientists use the brilliant X-rays at DESY's ring accelerator PETRA III. There the LISA diffracometer (Liquid Interfaces Scattering Apparatus), an instrument developed by the physicists from Kiel, deflects the highly focussed X-ray beam onto the liquid sample. "LISA was custom designed for investigating interfaces in liquids because here important chemical processes take place" explains Bridget Murphy, who was responsible for building up this instrument in the last few years.

In their latest work the researchers wanted to find out, for the first time, what exactly occurs during chemical growth at liquid interfaces. They investigated mercury in a salt solution containing fluorine, bromine and lead ions and obtained an astonishing result: although the molecules in both liquids were disordered, a nanometre thin layer, that is a ten thousandth of the width of a human hair, with crystalline order formed at their interface. "Our X-ray data show that this layer consists of an atomic layer of fluorine between two layers of lead and bromine," explains team member Annika Elsen, who just received her doctorate for this work. "Subsequently, larger crystals grow perfectly aligned on top of this nano-layer crystal."

The atomic order that develops at such disordered liquid interfaces is not only of fundamental interest for science. In fact, in the last few years, a range of chemical processes for producing materials and nano-particles has employed growth at liquid interfaces. For example, two years ago American scientists at the University of Michigan developed a similar process for manufacturing semiconductor germanium with an extremely energy efficient method from its oxide. Further developments of such processes could help to reduce the high energy costs in the production of solar cells. In order to achieve this the details of these processes, a better understanding on the atomic scale is required. The work of the Kiel scientists is a first step in this direction.

Kiel University, a research university in north Germany, has a proven international expertise in nano-science. Experiments with synchrotron radiation make an important contribution to this field. In a series of research consortia, funded by the ministry for education and research (Bundesministerium für Bildung und Forschung) Kiel scientists design and develop new methods and instruments.


Story Source:

The above story is based on materials provided by Christian-Albrechts-Universitaet zu Kiel. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Elsen, S. Festersen, B. Runge, C. T. Koops, B. M. Ocko, M. Deutsch, O. H. Seeck, B. M. Murphy, O. M. Magnussen. In situ X-ray studies of adlayer-induced crystal nucleation at the liquid-liquid interface. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1301800110

Cite This Page:

Christian-Albrechts-Universitaet zu Kiel. "Liquid on liquid goes solid." ScienceDaily. ScienceDaily, 10 April 2013. <www.sciencedaily.com/releases/2013/04/130410131135.htm>.
Christian-Albrechts-Universitaet zu Kiel. (2013, April 10). Liquid on liquid goes solid. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/04/130410131135.htm
Christian-Albrechts-Universitaet zu Kiel. "Liquid on liquid goes solid." ScienceDaily. www.sciencedaily.com/releases/2013/04/130410131135.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins