Featured Research

from universities, journals, and other organizations

Near-field behavior of semiconductor plasmonic microparticles measured

Date:
April 22, 2013
Source:
University of Illinois College of Engineering
Summary:
For the first time, researchers have measured nanometer-scale infrared absorption in semiconductor plasmonic microparticles using a technique that combines atomic force microscopy with infrared spectroscopy.

Atomic force microscope image of plasmonic semiconductor microparticles.
Credit: Image courtesy of University of Illinois College of Engineering

Recent progress in the engineering of plasmonic structures has enabled new kinds of nanometer-scale optoelectronic devices as well as high-resolution optical sensing. But until now, there has been a lack of tools for measuring nanometer-scale behavior in plasmonic structures which are needed to understand device performance and to confirm theoretical models.

"For the first time, we have measured nanometer-scale infrared absorption in semiconductor plasmonic microparticles using a technique that combines atomic force microscopy with infrared spectroscopy," explained William P. King, an Abel Bliss Professor in the Department of Mechanical Science and Engineering (MechSE) at Illinois. "Atomic force microscope infrared spectroscopy allows us to directly observe the plasmonic behavior within microparticle infrared antennas."

The article describing the research, "Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy," appears in Applied Physics Letters.

"Highly doped semiconductors can serve as wavelength flexible plasmonic metals in the infrared," noted Daniel M. Wasserman, assistant professor of electrical and computer engineering at Illinois. "However, without the ability to visualize the optical response in the vicinity of the plasmonic particles, we can only infer the near-field behavior of the structures from their far-field response. What this work gives us is a clear window into the optical behavior of this new class of materials on a length scale much smaller than the wavelength of light."

The article compares near-field and far-field measurements with electromagnetic simulations to confirm the presence of localized plasmonic resonance. The article further reports high resolution maps of the spatial distribution of absorption within single plasmonic structures and variation across plasmonic arrays.

"The ability to measure near field behavior in plasmonic structures allows us to begin expanding our design parameters for plasmonic materials," commented Jonathan Felts, a MechSE graduate student. "Now that we can measure the optical behavior of individual features, we can start to think about designing and testing more complex optical materials."

The authors on the research are Jonathan Felts, Stephanie Law, Daniel M. Wasserman, and William P. King of the University of Illinois at Urbana-Champaign, along with Christopher M. Roberts and Viktor Podolskiy of the University of Massachusetts. The article is available online. This research was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Illinois College of Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan R. Felts, Stephanie Law, Christopher M. Roberts, Viktor Podolskiy, Daniel M. Wasserman, William P. King. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Applied Physics Letters, 2013; 102 (15): 152110 DOI: 10.1063/1.4802211

Cite This Page:

University of Illinois College of Engineering. "Near-field behavior of semiconductor plasmonic microparticles measured." ScienceDaily. ScienceDaily, 22 April 2013. <www.sciencedaily.com/releases/2013/04/130422123004.htm>.
University of Illinois College of Engineering. (2013, April 22). Near-field behavior of semiconductor plasmonic microparticles measured. ScienceDaily. Retrieved July 27, 2014 from www.sciencedaily.com/releases/2013/04/130422123004.htm
University of Illinois College of Engineering. "Near-field behavior of semiconductor plasmonic microparticles measured." ScienceDaily. www.sciencedaily.com/releases/2013/04/130422123004.htm (accessed July 27, 2014).

Share This




More Matter & Energy News

Sunday, July 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins