Featured Research

from universities, journals, and other organizations

Cellulose goes off the rails: Without microtubule guidance, cellulose causes changes in organ patterns during growth

Date:
April 25, 2013
Source:
Max-Planck-Gesellschaft
Summary:
Mathematics is everywhere in nature, and this is illustrated by the spiral patterns in plants such as pine cones, sunflowers or the arrangement of leaves around a stem. Most plants produce a new bud at 137 degrees from its predecessor, and this mathematical precision leads to observable helices. Normally, the relative position of organs does not change during growth, because the stems grow straight.  But if the connection between the cytoskeleton and cellulose is removed, the cellulose fibres are synthesized in a tilted fashion and the stems start to twist. As a result, the angle between successive flowers disappears, and is instead replaced by other mathematical patterns that prove to be equally robust. Incidentally, this work suggests that in the absence of regulation, all plant stems should twist rather than grow straight.

Arabidopsis wild type plants (left) grow successive organs at an angle of 137 degrees, while the pom2-4 mutant (right) exhibits a divergence angle of 184 degrees due to unguided cellulose growth.
Credit: © MPI of Molecular Plant Physiology

Mathematics is everywhere in nature, and this is illustrated by the spiral patterns in plants such as pine cones, sunflowers or the arrangement of leaves around a stem. Most plants produce a new bud at 137 degrees from its predecessor, and this mathematical precision leads to observable helices. Normally, the relative position of organs does not change during growth, because the stems grow straight. But if the connection between the cytoskeleton and cellulose is removed, the cellulose fibres are synthesized in a tilted fashion and the stems start to twist. As a result, the angle between successive flowers disappears, and is instead replaced by other mathematical patterns that prove to be equally robust. Incidentally, this work suggests that in the absence of regulation, all plant stems should twist rather than grow straight.

Already Leonardo da Vinci realized that organs on stems are far away from being randomly distributed, and one doesn't need to be a scientist to recognize such elaborate systems. The basic phyllotactic patterns are "opposite," with two organs growing on opposite sides of the stem on the same level, and "alternate," where the organs grow in a spiral around the stem. The spiral pattern has the advantage that plans can make the most of sunlight.

Many scientists have investigated how such patterns can emerge, notably highlighting the contribution of plant hormones. However, plants are also growing objects and despite constant changes in shape due to growth, patterns can still be recognized in adult plants. Does this mean that growth has no effect on plant architecture? What is the contribution of growth in the stability of plant patterns?

Staffan Persson and his team from the Max Planck Institute of Molecular Plant Physiology focus on plant cell walls. The main component of cell walls is cellulose, which is essentially a long chain of sugar molecules. The motile enzyme complex that makes cellulose from sugar is guided by the cytoskeleton. "While we were experimenting with plants in which the connection between the microtubuli and the cellulose synthesizing proteins is hindered, we noticed that the stems of the plants don't grow straight anymore," Persson explains. Instead, the stems started to twist and always showed a subtle right-hand torsion.

The scientists assumed that the cause for their observation might actually be the unoriented cellulose fibres. Without the guidance of the microtubuli the cellulose fibres become more and more tilted and, thereby, cause the torsion of the stem, which in turn dislocates the organs around the stem. The group of Olivier Hamant from the École normale supérieure (ENS) in Lyon, France, started taking exact measures on Persson's plants. "While wild type Arabidopsis plants show a constant divergence angle of 137.5 degrees between adjacent siliques, we observed angles of either 90 degrees or 184 degrees on our plants," first author Benoit Landrein describes their results. Plants which produced organs in a clockwise orientation showed a divergence angle of 90 degrees. If the organ formation was counter-clockwise scientists measured a constant 184 degrees. "The most surprising thing for us was that one mathematical pattern was replaced by another one," says Hamant and Persson. While the torsion of the stem does disrupt the spiral pattern, another, equally robust pattern is established.

To prove that it is really the cellulose fibres that are causing the torsion of the stem, the scientists conducted another experiment. This time they measured plants which, due to a mutation, produce significantly shorter cellulose fibres. The torsion of the stem was indeed not as pronounced, which was in accordance to their previous results.

Because the mechanisms behind patterning were largely unknown, developmental studies have largely neglected the impact of growth on morphogenesis, i.e. the development of organs and tissues. "Our findings thus shed a new light on plant development by including and understanding the contribution of growth in patterning," Hamant adds. It also highlights how a microscopic event, the disconnection between cellulose and cytoskeleton, can lead to major macroscopic consequences, a novel plant architecture. With these new results and the newly gained understanding about the interplay between growth and patterning, the time has now come to investigate morphogenesis in all its complexity.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Benoît Landrein, Rahul Lathe, Martin Bringmann, Cyril Vouillot, Alexander Ivakov, Arezki Boudaoud, Staffan Persson, Olivier Hamant. Impaired Cellulose Synthase Guidance Leads to Stem Torsion and Twists Phyllotactic Patterns in Arabidopsis. Current Biology, 2013; DOI: 10.1016/j.cub.2013.04.013

Cite This Page:

Max-Planck-Gesellschaft. "Cellulose goes off the rails: Without microtubule guidance, cellulose causes changes in organ patterns during growth." ScienceDaily. ScienceDaily, 25 April 2013. <www.sciencedaily.com/releases/2013/04/130425132523.htm>.
Max-Planck-Gesellschaft. (2013, April 25). Cellulose goes off the rails: Without microtubule guidance, cellulose causes changes in organ patterns during growth. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/04/130425132523.htm
Max-Planck-Gesellschaft. "Cellulose goes off the rails: Without microtubule guidance, cellulose causes changes in organ patterns during growth." ScienceDaily. www.sciencedaily.com/releases/2013/04/130425132523.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins