Featured Research

from universities, journals, and other organizations

Cell response to new coronavirus unveils possible paths to treatments

Date:
April 30, 2013
Source:
NIH/National Institute of Allergy and Infectious Diseases
Summary:
Scientists have used lab-grown human lung cells to study the cells' response to infection by a novel human coronavirus (called nCoV) and compiled information about which genes are significantly disrupted in early and late stages of infection. The information about host response to nCoV allowed the researchers to predict drugs that might be used to inhibit either the virus itself or the deleterious responses that host cells make in reaction to infection.

This is the transmission electron micrograph of novel coronavirus.
Credit: Credit: NIAID/RML

Investigators, led by Michael G. Katze, Ph.D., of the University of Washington, compared cellular gene expression responses to two viruses: the novel coronavirus and a coronavirus that caused a global outbreak of severe acute respiratory syndrome (SARS) in 2003. Although the viruses are in the same family, their effects on human cells are vastly different. In general, nCoV disrupted a greater number of human genes more profoundly and at more time points after infection than the SARS coronavirus.

Related Articles


The team identified one set of 207 human genes whose expression differed from normal soon after infection with nCoV and remained disrupted throughout the course of infection. Notably, nCoV down-regulated the activity of a group of genes involved in signaling the presence of an invading virus to the immune system. Such down-regulation may cause a delay in the infection-fighting response.

The researchers used computational approaches to determine that certain classes of drugs, including specific kinase inhibitors and one type of glucocorticoid, act on some of the 207 human genes whose expression was found to be disrupted by nCoV. The team hypothesized that treatment with such drugs might block nCoV replication and disease progression in the host. In their current study, they tested this hypothesis using a kinase inhibitor on nCoV-infected cells grown in test tubes. They found that the drug did inhibit the ability of the virus to replicate.

Additional studies are needed to see if kinase inhibitors could be useful alone or in combination with other drugs to treat nCoV infection in people.


Story Source:

The above story is based on materials provided by NIH/National Institute of Allergy and Infectious Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. L Josset et al. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio, 2013 DOI: 10.1128/mBio.00165-13

Cite This Page:

NIH/National Institute of Allergy and Infectious Diseases. "Cell response to new coronavirus unveils possible paths to treatments." ScienceDaily. ScienceDaily, 30 April 2013. <www.sciencedaily.com/releases/2013/04/130430131649.htm>.
NIH/National Institute of Allergy and Infectious Diseases. (2013, April 30). Cell response to new coronavirus unveils possible paths to treatments. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2013/04/130430131649.htm
NIH/National Institute of Allergy and Infectious Diseases. "Cell response to new coronavirus unveils possible paths to treatments." ScienceDaily. www.sciencedaily.com/releases/2013/04/130430131649.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins