Featured Research

from universities, journals, and other organizations

New mouse model confirms how type 2 diabetes develops

Date:
May 3, 2013
Source:
Lund University
Summary:
Researchers have developed a new mouse model that answers the question of what actually happens in the body when type 2 diabetes develops and how the body responds to drug treatment. Long-term studies of the middle-aged mouse model will be better than previous studies at confirming how drugs for type 2 diabetes function in humans.

Researchers at Lund University in Sweden have developed a new mouse model that answers the question of what actually happens in the body when type 2 diabetes develops and how the body responds to drug treatment. Long-term studies of the middle-aged mouse model will be better than previous studies at confirming how drugs for type 2 diabetes function in humans.

Related Articles


"The animal models for type 2 diabetes studies that have previously existed have not been optimal because they use young mice. Our idea was to create a model that resembles the situation in the development of type 2 diabetes in humans. We generally get the disease in middle age when we start to put on weight and live a more sedentary, and more stressful, life. Our new middle-aged mouse model has enabled us to study long-term physiological effects of the development and treatment of type 2 diabetes in a completely new way," said Bilal Omar, one of the researchers behind the study.

What the Lund researchers have done is to feed normal mice fatty food over a long period from the age of eight months, i.e. middle age, until the end of their natural lives at the age of two. The mice become overweight, and develop high blood sugar levels and reduced insulin release, as expected before the onset of type 2 diabetes.

"Throughout the period we were able to study the process that leads to the development of type 2 diabetes with a lifestyle like that of people predisposed to the condition," said Bilal Omar.

In the study, the researchers could confirm that fatty foods lead to inflammation in the islets of Langerhans in the pancreas, which produce insulin. Researchers have seen inflammation in the islets in people with type 2 diabetes, but in Bilal Omar's view, it is only with the new mouse model that it can really be confirmed. Inflammation in these islets is an important risk factor for type 2 diabetes.

"What was so interesting and exciting was that the mice that were treated with DPP-4 inhibitors, a class of drugs used for type 2 diabetes, did not develop inflammation and they maintained good insulin production. They were still obese, but had normal blood sugar, were otherwise healthy and lived longer," said Bilal Omar.

Researchers have worked for decades and on many fronts to understand the causes and course of diabetes. Models of different diseases are therefore an important tool for the development of new and better drugs, and a requirement to develop the best possible drugs is to understand what is happening on a physiological level.

"The goal is to design drugs and treatments which, if they can't cure the disease, can at least give the patient a better quality of life for several years," said Bilal Omar.

"Another aspect of our findings is that the inflammation in the islets was caused by a high-fat diet. Even if it is too early to draw parallels with the diet of humans, it makes it doubtful whether a high-fat diet over a long period should be recommended, as in the LCHF diet," said Professor Bo Ahrén, another of the researchers behind the study.


Story Source:

The above story is based on materials provided by Lund University. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. A. Omar, J. Vikman, M. S. Winzell, U. Voss, E. Ekblad, J. E. Foley, B. Ahrén. Enhanced beta cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model. Diabetologia, 2013; DOI: 10.1007/s00125-013-2927-8

Cite This Page:

Lund University. "New mouse model confirms how type 2 diabetes develops." ScienceDaily. ScienceDaily, 3 May 2013. <www.sciencedaily.com/releases/2013/05/130503094122.htm>.
Lund University. (2013, May 3). New mouse model confirms how type 2 diabetes develops. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/05/130503094122.htm
Lund University. "New mouse model confirms how type 2 diabetes develops." ScienceDaily. www.sciencedaily.com/releases/2013/05/130503094122.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins