Featured Research

from universities, journals, and other organizations

'Going negative' pays for nanotubes

Date:
May 3, 2013
Source:
Rice University
Summary:
Researchers turn carbon nanotubes into negatively charged liquid crystals that could enhance the creation of fibers and films.

Crown ether “cages” trap potassium ions but leave nanotubes with a repellant negative charge in solutions that will be valuable for forming very strong, highly conductive carbon nanotube fibers. The Rice University discovery appears in ACS Nano.
Credit: Credit: Martí Group/Rice University

A Rice University laboratory's cagey strategy turns negatively charged carbon nanotubes into liquid crystals that could enhance the creation of fibers and films.

Related Articles


The latest step toward making macro materials out of microscopic nanotubes depends on cage-like crown ethers that capture potassium cations. Negatively charged carbon nanotubes associate with potassium cations to maintain their electrical neutrality. In effect, the ethers help strip these cations from the surface of the nanotubes, resulting into a net charge that helps counterbalance the electrical van der Waals attraction that normally turns carbon nanotubes into an unusable clump.

The process by Rice chemist Angel Martí, his students and colleagues was revealed in the American Chemical Society journal ACS Nano.

Carbon nanotubes have long been thought of as a potential basis for ultrastrong, highly conductive fibers -- a premise borne out in recent work by Rice professor and co-author Matteo Pasquali -- and preparing them has depended on the use of a "superacid," chlorosulfonic acid, that gives the nanotubes a positive charge and makes them repel each other in a solution.

Martí and first authors Chengmin Jiang and Avishek Saha, both graduate students at Rice, decided to look at producing nanotube solutions from another angle. "We saw in the literature there was a way to do the opposite and give the surface of the nanotubes negative charges," Martí said. It involved infusing single-walled carbon nanotubes with alkali metals, in this case, potassium, and turning them into a kind of salt known as a polyelectrolyte. Mixing them into an organic solvent, dimethyl sulfoxide (DMSO), forced the negatively charged nanotubes to shed some potassium ions and repel each other, but in concentrations too low for extruding into fibers and films.

That took the addition of ether molecules known as 18-crown-6 for their crown-like atomic arrangements. The crowns have a particular appetite for potassium; they strip the remaining ions from the nanotube walls and sequester them. The tubes' repulsive qualities become greater and allow for more nanotubes in a solution before van der Waals forces them to coagulate.

At critical mass, nanotubes suspended in solution run out of room and form a liquid crystal, Martí said. "They align when they get so crowded in the solution that they cannot pack any closer in a randomly aligned state," he said. "Electrostatic repulsions prevent van der Waals interactions from taking over, so nanotubes don't have another choice but to align themselves, forming liquid crystals."

Liquid crystalline nanotubes are essential to the production of strong, conductive fiber, like the fiber achieved with superacid suspensions. But Martí said going negative means nanotubes can be more easily functionalized -- that is, chemically altered for specific uses.

"The negative charges on the surface of the nanotubes allow chemical reactions that you cannot do with superacids," Martí said. "You may, for example, be able to functionalize the surface of the carbon nanotubes at the same time you're making fiber. You might be able to crosslink nanotubes to make a stronger fiber while extruding it.

"We feel we're bringing a new player to the field of carbon nanotechnology, especially for making macroscopic materials," he said.

Co-authors of the paper are Rice graduate students Changsheng Xiang and Colin Young James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. Pasquali is a professor of chemical and biomolecular engineering and of chemistry. Martí is an assistant professor of chemistry and bioengineering.


Story Source:

The above story is based on materials provided by Rice University. The original article was written by Mike Williams. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chengmin Jiang, Avishek Saha, Changsheng Xiang, Colin C. Young, James M. Tour, Matteo Pasquali, Angel A. Mart. Increased Solubility, Liquid-Crystalline Phase, and Selective Functionalization of Single-Walled Carbon Nanotube Polyelectrolyte Dispersions. ACS Nano, 2013; 130416090924009 DOI: 10.1021/nn4011544

Cite This Page:

Rice University. "'Going negative' pays for nanotubes." ScienceDaily. ScienceDaily, 3 May 2013. <www.sciencedaily.com/releases/2013/05/130503114718.htm>.
Rice University. (2013, May 3). 'Going negative' pays for nanotubes. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2013/05/130503114718.htm
Rice University. "'Going negative' pays for nanotubes." ScienceDaily. www.sciencedaily.com/releases/2013/05/130503114718.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aérea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com
'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) — A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins