Featured Research

from universities, journals, and other organizations

Genome sequencing provides unprecedented insight into causes of pneumococcal disease

Date:
May 5, 2013
Source:
Harvard School of Public Health
Summary:
A new study has, for the first time, used genome sequencing technology to track the changes in a bacterial population following the introduction of a vaccine.

A new study led by researchers from Harvard School of Public Health (HSPH) and the Wellcome Trust Sanger Institute in the UK has, for the first time, used genome sequencing technology to track the changes in a bacterial population following the introduction of a vaccine. The study follows how the population of pneumococcal bacteria changed following the introduction of the 'Prevnar' conjugate polysaccharide vaccine, which substantially reduced rates of pneumococcal disease across the U.S. The work demonstrates that the technology could be used in the future to monitor the effectiveness of vaccination or antibiotic use against different species of bacterial pathogens, and for characterizing new and emerging threats.

Related Articles


The study appears online May 5, 2013 in Nature Genetics.

"This gives an unprecedented insight into the bacteria living and transmitting among us," said co-author William Hanage, associate professor of epidemiology at HSPH. "We can characterize these bugs to an almost unimaginable degree of detail, and in so doing understand better what helps them survive even in the presence of an effective vaccine."

Pneumococcal disease is caused by a type of bacteria called Streptococcus pneumoniae, which is present in many people's noses and throats and is spread by coughing, sneezing, or other contact with respiratory secretions. The circumstances that cause it to become pathogenic are not fully understood. Rates of pneumococcal disease -- an infection that can lead to pneumonia, meningitis, and other illnesses -- dropped in young children following the introduction of a vaccine in 2000. However, strains of the bacteria that are not targeted by the vaccine rapidly increased and drug resistance appears to be on the rise.

The research, led by HSPH co-senior authors Hanage; Marc Lipsitch, professor of epidemiology; and Stephen Bentley, senior scientist at the Wellcome Trust Sanger Institute, aimed to better understand the bacterial population's response to vaccination. Whole genome sequencing -- which reveals the DNA code for each bacterial strain to an unprecedented level of detail -- was used to study a sample of 616 pneumococci collected in Massachusetts communities from 2001 to 2007.

This study confirmed that the parts of the bacterial population targeted by the vaccine have almost disappeared, and, surprisingly, revealed that they have been replaced by pre-existing rare types of bacteria. The genetic composition of the new population is very similar to the original one, except for a few genes that were directly affected by the vaccine. This small genetic alteration appears to be responsible for the large reduction in the rates of pneumococcal disease.

"The widespread use of whole genome sequencing will allow better surveillance of bacterial populations -- even those that are genetically diverse -- and improve understanding of their evolution," said Lipsitch. "In this study, we were even able to see how quickly these bacteria transmit between different regions within Massachusetts and identify genes associated with bacteria in children of different ages."

"In the future, we will be able to monitor evolutionary changes in real-time. If we can more quickly and precisely trace the emergence of disease-causing bacteria, we may be able to better target interventions to limit the burden of disease," said Bentley.


Story Source:

The above story is based on materials provided by Harvard School of Public Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicholas J Croucher, Jonathan A Finkelstein, Stephen I Pelton, Patrick K Mitchell, Grace M Lee, Julian Parkhill, Stephen D Bentley, William P Hanage, Marc Lipsitch. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature Genetics, 2013; DOI: 10.1038/ng.2625

Cite This Page:

Harvard School of Public Health. "Genome sequencing provides unprecedented insight into causes of pneumococcal disease." ScienceDaily. ScienceDaily, 5 May 2013. <www.sciencedaily.com/releases/2013/05/130505145928.htm>.
Harvard School of Public Health. (2013, May 5). Genome sequencing provides unprecedented insight into causes of pneumococcal disease. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/05/130505145928.htm
Harvard School of Public Health. "Genome sequencing provides unprecedented insight into causes of pneumococcal disease." ScienceDaily. www.sciencedaily.com/releases/2013/05/130505145928.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins