Featured Research

from universities, journals, and other organizations

Lucky bacteria strike it rich during formation of treatment-resistant colonies: Research could help in battle against infections that do not respond to powerful drugs

Date:
May 8, 2013
Source:
Northwestern University
Summary:
Like pioneers in search of a better life, bacteria on a surface wander around and often organize into highly resilient communities, known as biofilms. It turns out that a lucky few bacteria become the elite cells that start the colonies, and they organize in a rich-get-richer pattern similar to the distribution of wealth in the US economy, according to a new study.

In biology, we often think of natural selection and survival of the fittest. What about survival of the luckiest?

Like pioneers in search of a better life, bacteria on a surface wander around and often organize into highly resilient communities, known as biofilms. It turns out that a lucky few bacteria become the elite cells that start the colonies, and they organize in a rich-get-richer pattern similar to the distribution of wealth in the U.S. economy, according to a new study by researchers at UCLA, Northwestern University and the University of Washington.

The study, to be published online May 8 in the journal Nature, is the first to identify the strategy by which bacteria form initial colonies in biofilms. The research may have significant implications for battling stubborn bacterial infections that do not respond to powerful drugs, as well as for other applications.

Biofilms are colonies of bacteria that form on surfaces, including human tissue. Bacteria in biofilms change their gene expression patterns and are far more resistant to antibiotics and the body's immune defenses than individual, free-swimming bacteria, because they mass together and surround themselves with a matrix of proteins, DNA and sugars. This makes seemingly routine infections potentially deadly.

Gerard Wong, a professor in the UCLA bioengineering and chemistry departments; Erik Luijten, an associate professor of applied mathematics and of materials science and engineering at Northwestern University; and Matthew R. Parsek, a professor of microbiology at the University of Washington, led a team of researchers who elucidated the early formation of biofilms by using algorithms to track the development of different strains of the bacterium Pseudomonas aeruginosa and by conducting computer simulations to map the movements. P. aeruginosa can cause lethal, difficult-to-treat infections. Examples include infections found in cystic fibrosis and AIDS patients.

Surprisingly, the researchers found that the individual bacteria that start the formation of micro-colonies have no special inherent qualities.

As bacteria move across a surface, they leave trails composed of a specific type of polysaccharide, or long sugar molecules.

"Some of the bacteria remained fixed in position," Parsek said, "but some moved around on the surface, apparently randomly but leaving a trail that influenced the surface behavior of other bacteria that encountered it."

Bacteria arriving later also lay trails, but tend to be guided by the trails from the pioneers. This network of trails creates a process of positive feedback and enables bacteria to organize into micro-colonies that mature into biofilms. By being at the right place at the right time, and by using communally produced polysaccharides, a small number of lucky cells -- often ones that come later -- become the first to form micro-colonies, which give cells many survival advantages over other bacteria.

Interestingly, these biofilms develop in accordance with Zipf's Law, which is one special form of the rich-get-richer phenomena. A well-known example of this is the distribution of wealth in the United States. Recent statistics indicate that the wealthiest 20 percent of the population have more than 80 percent of the total wealth. Most of the wealth in this elite group is in turn owned by a small elite fraction within the elite, and so on.

"It turns out bacteria do the same thing," Wong said. "By effectively taking a census of bacteria using our recently developed methods, we find that the way they organize into micro-colonies is not random, as was previously thought."

Extending the economic analogy, Wong said the research may provide insight into how to fight antibiotic-resistant bacteria. "Typically, when we want to get rid of bacteria, we just kill them with antibiotics," he said. "As a result, they develop defense mechanisms and grow stronger. Maybe that's not always the best way to treat biofilms. Perhaps we can regulate bacterial communities the way we regulate economies. Our work suggests that new treatment options may use incentives and communications as well as punishment to control bacterial communities."

"A truly beautiful aspect of this work is how it relies on a combination of experiments and computer simulations," Luijten said. "Only through combination of the totally different types of expertise of three different research groups has it been possible to disentangle what is going on, and how polysaccharides influence the organization of bacteria into micro-colonies."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kun Zhao, Boo Shan Tseng, Bernard Beckerman, Fan Jin, Maxsim L. Gibiansky, Joe J. Harrison, Erik Luijten, Matthew R. Parsek, Gerard C. L. Wong. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature, 2013; DOI: 10.1038/nature12155

Cite This Page:

Northwestern University. "Lucky bacteria strike it rich during formation of treatment-resistant colonies: Research could help in battle against infections that do not respond to powerful drugs." ScienceDaily. ScienceDaily, 8 May 2013. <www.sciencedaily.com/releases/2013/05/130508131819.htm>.
Northwestern University. (2013, May 8). Lucky bacteria strike it rich during formation of treatment-resistant colonies: Research could help in battle against infections that do not respond to powerful drugs. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/05/130508131819.htm
Northwestern University. "Lucky bacteria strike it rich during formation of treatment-resistant colonies: Research could help in battle against infections that do not respond to powerful drugs." ScienceDaily. www.sciencedaily.com/releases/2013/05/130508131819.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins