Featured Research

from universities, journals, and other organizations

Spintronics discovery: Scientists find new 'magic' in magnetic material

Date:
May 8, 2013
Source:
University of Delaware
Summary:
Researchers have reported a fundamental finding that will help advance the development of next-generation electronics called "spintronics."

UD professor John Xiao (standing) and research associate Xin Fan work with the high vacuum magnetron deposition system, which is used to fabricate layered thin films in a vacuum for spintronics research. The instrument is capable of depositing up to eight different materials in a single film stack.
Credit: Evan Krape

From powerful computers to super-sensitive medical and environmental detectors that are faster, smaller and use less energy -- yes, we want them, but how do we get them?

In research that is helping to lay the groundwork for the electronics of the future, University of Delaware scientists have confirmed the presence of a magnetic field generated by electrons which scientists had theorized existed, but that had never been proven until now.

The finding, which is reported in the journal Nature Communications, expands the potential for harnessing the "spin" or magnetic properties of electrons -- adding a fundamental new building block to the pioneering field of spintronics.

John Xiao, Unidel Professor of Physics and Astronomy at UD, is the lead author of the study. His co-authors include research associate Xin Fan, graduate students Jun Wu and Yunpeng Chen, and undergraduate student Matthew Jerry from UD, and Huaiwu Zhang from the University of Electronic Science and Technology of China.

Today's semiconductors, which are essential to the operation of a broad array of electronics, carry along the electrical charge of electrons, but make no use of the magnetic or "spin" properties of these subatomic particles. Xiao and his team are working to unveil those properties in UD's Center for Spintronics and Biodetection.

As Xiao explains, in the presence of a magnet, an electron will take a "spin up" or "spin down" position, correlating to the binary states of 1 or 0 that computers use to encode and process data. One spin state aligns with the magnetic field, and one opposes it. A spintronics device requires an excess number of either spin-up or spin-down electrons. Controlling the direction of the magnetization is a major goal in the fledgling field.

For the past few years, scientists have succeeded in generating a pure spin current in which electrons with opposite spins move in opposite directions. This is achieved by passing an electrical current through a heavy metal that's not magnetic, such as platinum, tungsten and tantalum.

However, in a double layer of heavy metal and ferromagnetic material (for example, iron or cobalt), this pure spin current will diffuse into the ferromagnetic material. When this occurs, Xiao and his team have detected a magnetic field, which can switch the material's magnetization.

This magnetic field is confined inside the ferromagnetic material unlike the conventional magnetic field generated from a magnet, which is difficult to shield. Xiao says this finding is particularly important to high-density integrated circuits, such as magnetic random access memory, in which shielding the magnetic field between cells is "a nightmare."

"This magnetic field was predicted previously but was never experimentally confirmed. We demonstrated that it's there," Xiao says. "We now have a new means of generating a magnetic field and controlling the direction of a nanomagnet, as well as a new measurement technique to characterize the magnetic field."

Funding for Xiao's study was provided by the Department of Energy and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Delaware. The original article was written by Tracey Bryant. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xin Fan, Jun Wu, Yunpeng Chen, Matthew J. Jerry, Huaiwu Zhang, John Q. Xiao. Observation of the nonlocal spin-orbital effective field. Nature Communications, 2013; 4: 1799 DOI: 10.1038/ncomms2709

Cite This Page:

University of Delaware. "Spintronics discovery: Scientists find new 'magic' in magnetic material." ScienceDaily. ScienceDaily, 8 May 2013. <www.sciencedaily.com/releases/2013/05/130508171901.htm>.
University of Delaware. (2013, May 8). Spintronics discovery: Scientists find new 'magic' in magnetic material. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/05/130508171901.htm
University of Delaware. "Spintronics discovery: Scientists find new 'magic' in magnetic material." ScienceDaily. www.sciencedaily.com/releases/2013/05/130508171901.htm (accessed July 31, 2014).

Share This




More Computers & Math News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services


Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins