Featured Research

from universities, journals, and other organizations

Non-inherited mutations account for many heart defects

Date:
May 12, 2013
Source:
Yale University
Summary:
New mutations that are absent in parents but appear in their offspring account for at least 10 percent of severe congenital heart disease, reveals a massive genomics study.

New mutations that are absent in parents but appear in their offspring account for at least 10% of severe congenital heart disease, reveals a massive genomics study led by researchers.
Credit: Image by Patrick Lynch, Yale University

New mutations that are absent in parents but appear in their offspring account for at least 10% of severe congenital heart disease, reveals a massive genomics study led, in part, by researchers at the Yale School of Medicine.

Related Articles


The analysis of all the genes of more than 1800 individuals found hundreds of mutations that can cause congenital heart disease, the most common form of birth defect that afflicts nearly 1% of all newborns. In particular, the study found frequent mutations in genes that modify histones, proteins that package DNA in the nucleus and orchestrate the timing and activation of genes crucial to development of the fetus.

The results of the study, part of the Pediatric Cardiac Genomics Consortium funded by the NIH's National Heart, Lung, and Blood Institute (NHLBI), were published online May 12 in the journal Nature.

"These findings provide new insight into the causes of this common congenital disease," said Richard Lifton, Sterling Professor and chair of the Department of Genetics, investigator for the Howard Hughes Medical Institute, and a senior author of the paper. "Most interestingly, the set of genes mutated in congenital heart disease unexpectedly overlapped with genes and pathways mutated in autism. These findings suggest there may be common pathways that underlie a wide range of common congenital diseases."

"This is an important piece of the puzzle that gives us a clearer picture of the causes of congenital heart disease," said Gary H. Gibbons, M.D., director of the NHLBI. "What this international, multi-center collaborative research effort was able to accomplish, in a small amount of time, is truly remarkable. The state-of-the-art sequencing techniques that were used are allowing us to push the envelope and envision a day when we may be able to better treat and eventually prevent congenital heart disease in the early stages of heart formation."

The mutations can occur at the same site, and both increase and decrease the modification histone proteins, said Martina Brueckner, professor of pediatrics and genetics at Yale and another senior author of the study. The results suggest a very sensitive developmental system that might also be influenced by environmental factors in development.

"These findings point to fundamental mechanisms that play a role in a wide range of congenital diseases," Lifton said.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Samir Zaidi, Murim Choi, Hiroko Wakimoto, Lijiang Ma, Jianming Jiang, John D. Overton, Angela Romano-Adesman, Robert D. Bjornson, Roger E. Breitbart, Kerry K. Brown, Nicholas J. Carriero, Yee Him Cheung, John Deanfield, Steve DePalma, Khalid A. Fakhro, Joseph Glessner, Hakon Hakonarson, Michael J. Italia, Jonathan R. Kaltman, Juan Kaski, Richard Kim, Jennie K. Kline, Teresa Lee, Jeremy Leipzig, Alexander Lopez, Shrikant M. Mane, Laura E. Mitchell, Jane W. Newburger, Michael Parfenov, Itsik Pe’er, George Porter, Amy E. Roberts, Ravi Sachidanandam, Stephan J. Sanders, Howard S. Seiden, Mathew W. State, Sailakshmi Subramanian, Irina R. Tikhonova, Wei Wang, Dorothy Warburton, Peter S. White, Ismee A. Williams, Hongyu Zhao, Jonathan G. Seidman, Martina Brueckner, Wendy K. Chung, Bruce D. Gelb, Elizabeth Goldmuntz, Christine E. Seidman, Richard P. Lifton. De novo mutations in histone-modifying genes in congenital heart disease. Nature, 2013; DOI: 10.1038/nature12141

Cite This Page:

Yale University. "Non-inherited mutations account for many heart defects." ScienceDaily. ScienceDaily, 12 May 2013. <www.sciencedaily.com/releases/2013/05/130512141210.htm>.
Yale University. (2013, May 12). Non-inherited mutations account for many heart defects. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/05/130512141210.htm
Yale University. "Non-inherited mutations account for many heart defects." ScienceDaily. www.sciencedaily.com/releases/2013/05/130512141210.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Spontaneous Mutations Play a Key Role in Congenital Heart Disease

May 12, 2013 Although genetic factors contribute to congenital heart disease, many children born with heart defects have healthy parents and siblings, suggesting that new mutations that arise spontaneously —- ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins