Featured Research

from universities, journals, and other organizations

Oxygen consumption of individual cells measured: Scanning electrochemical microscopy decisively optimized

Date:
May 13, 2013
Source:
Ruhr-Universitaet-Bochum
Summary:
How active a living cell is can be seen by its oxygen consumption. The method for determining this consumption has now been significantly improved. The problem up to now was that the measuring electrode altered the oxygen consumption in the cell's environment much more than the cell itself.

Scanning electrochemical microscopy: Researchers position a microelectrode (grey) in the immediate vicinity of the cell. At the electrode, oxygen is converted into water (black arrow), while electrons flow through the electrode. Through cellular respiration (green arrow), the cell consumes oxygen and competes with the electrode. Additional sources of oxygen can interfere with the measurement: oxygen can diffuse from the surrounding aqueous solution into the gap between the electrode and the cell (grey arrow) or be extracted from the cell (blue arrows). The topography, i.e. the height profile of the cell, is shown on the top left; at the top right the oxygen consumption measured at the cell surface is displayed.
Credit: Copyright Wolfgang Schuhmann

How active a living cell is can be seen by its oxygen consumption. The method for determining this consumption has now been significantly improved by chemists in Bochum. The problem up to now was that the measuring electrode altered the oxygen consumption in the cell's environment much more than the cell itself. "We already found that out twelve years ago," says Prof. Dr. Wolfgang Schuhmann from the Department of Analytical Chemistry at the Ruhr-Universitδt. "Now we have finally managed to make the measuring electrode an spectator."

Related Articles


Together with his team, he reports in the International Edition of the journal Angewandte Chemie.

Precise positioning of the measuring electrodes

Cells need oxygen for various metabolic processes, for example to break down glucose. To measure its consumption, researchers have to detect very small signals in a large background noise. For this they use scanning electrochemical microscopy, for which they need to position electrodes with a diameter of five micrometres or below at a distance of 200 nanometres from the cell. To this end, the RUB team has developed a special process over the last few years, with which the distance of the electrode to the cell can be precisely controlled.

Making competition to the cells with microelectrodes

Using the electrode, the researchers first generate oxygen in the aqueous environment of the cell, and then they measure how much of this oxygen the cell utilises. For this purpose, they give the electrode a certain potential at the beginning. This has the effect that electrons are extracted from water in the cell environment under formation of oxygen. The cell can use the oxygen for its metabolism; however, at the same time, the microelectrode applied by the researchers competes against it. They change the potential at the electrode so that the reaction reverses: oxygen is now converted to water. The scientists use the electrode to measure the electrons flowing and thus obtain a measure of the oxygen consumption in the local environment. The more oxygen the cell uses for its metabolism, the less oxygen is left for the current-generating reaction at the electrode. Thus, the lower the current flow measured, the greater the activity of the cell. This method is termed the redox competition mode.

Rapid measurement

In the methods used so far, the oxygen consumption caused by the electrode was significantly higher than that of the cell. "The measurement itself thus caused a stronger local change in the oxygen concentration than the cell metabolism," explains Prof. Schuhmann. It was essential to measure the activity of the cell very quickly after the oxygen was generated at the microelectrode, i.e. after twenty milliseconds. If you wait longer, the electrode deprives the cell of oxygen instead of using the oxygen from the environment that the researchers had artificially created in advance. Three factors were therefore crucial for the success of the Bochum method: the highly accurate position of the electrodes, the redox competition mode and the rapid measuring time.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michaela Nebel, Stefanie Grόtzke, Nizam Diab, Albert Schulte, Wolfgang Schuhmann. Visualization of Oxygen Consumption of Single Living Cells by Scanning Electrochemical Microscopy: The Influence of the Faradaic Tip Reaction. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201301098

Cite This Page:

Ruhr-Universitaet-Bochum. "Oxygen consumption of individual cells measured: Scanning electrochemical microscopy decisively optimized." ScienceDaily. ScienceDaily, 13 May 2013. <www.sciencedaily.com/releases/2013/05/130513083053.htm>.
Ruhr-Universitaet-Bochum. (2013, May 13). Oxygen consumption of individual cells measured: Scanning electrochemical microscopy decisively optimized. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/05/130513083053.htm
Ruhr-Universitaet-Bochum. "Oxygen consumption of individual cells measured: Scanning electrochemical microscopy decisively optimized." ScienceDaily. www.sciencedaily.com/releases/2013/05/130513083053.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) — Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins