Featured Research

from universities, journals, and other organizations

Obtaining polymers with à la carte optical and electrical properties

Date:
May 15, 2013
Source:
Basque Research
Summary:
Scientists have created nanostructured composite materials with specific optical and electrical properties that vary according to size. These properties allow researchers to synthesize particles of the size corresponding to the desired properties, and by adding these particles to polymers, to give the final product one specific property or another.

Scientists are working with particles that act like quantum dots, specifically with cadmium and selenium composite nanoparticles.
Credit: Image courtesy of Basque Research

By adding semiconducting nanoparticles to polymers, the Materials + Technologies Research Group (GMT) of the Polytechnical College of San Sebastian of the UPV/EHU-University of the Basque Country has created nanostructured composite materials with specific optical and electrical properties that vary according to size. These properties allow researchers to synthesise particles of the size corresponding to the desired properties, and by adding these particles to polymers, to give the final product one specific property or another.

Related Articles


At the UPV/EHU's Polytechnical College of San Sebastian they are working with particles that act like quantum dots, specifically with cadmium and selenium composite nanoparticles. One of the characteristics of quantum dots is that the optical and electrical properties of the particle vary according to size.

In the case of the cadmium and selenium composite particles, this variation takes place in nanoparticles of less than 10 nanometres -- a nanometre is equal to one millionth of a millimetre -- , and, "therefore it is not the same to have a nanoparticle of 3 nanometres or one of 6 nanometres," explains Haritz Etxeberria, researcher in the UPV/EHU's department of Chemical Engineering and the Environment and author of the research. This allows nanoparticles with very specific properties to be synthesised, and subsequently when these nanoparticles are incorporated into other materials, the researcher can prepare new composite materials with pre-selected properties. "Through nanocharges it is possible to add other properties to the intrinsic properties of the basic materials: nanoparticles, nanoclays, fibres, etc. Finally, by uniting the properties of some of them, materials with new properties are obtained," says Etxeberria.

In opto-electronics, biomedicine and in the field of solar panels the authors are seeking applications for the particles that function like quantum dots.

The work done by Etxeberria consisted of synthesising composite cadmium and selenium nanoparticles, and subsequently, of analysing methods for inserting these nanoparticles into a polymer. The main challenge tends to be in fact dispersing the nanoparticles properly throughout the polymer; failure to achieve this means that the composite material will not have the properties that one wants to give it by means of the nanoparticles. "Because the nanoparticles are so small, they tend to group together. So large agglomerates are obtained and they appear mixed in different phases. But when their size is increased, they lose the properties they have as nanoparticles," stresses Etxeberria.

In the first phase of the research work, Etxeberria synthesized nanoparticles of cadmium selenide of different sizes and, bearing in mind the importance of size in the properties of the particle, he analysed various synthesis parameters to optimize the synthesis of the nanoparticles and obtain nanoparticles of cadmium selenide of the desired size and properties.

In the second phase, he analysed methodologies for inserting and dispersing nanoparticles of a specific size (of between 3 and 4 nanometres) throughout the polymer. For this purpose he worked with a block copolymer made of polystyrene and polybutadiene. "We used block copolymers because they allow the phases to be obtained. They share immiscible ingredients, but because they are bonded to each other, they create phase arrangements on a nanometric level, and allow the adding of nanoparticles that have an affinity with one phase or another," explains Etxeberria.

Etxeberria was aiming to disperse the cadmium selenide nanoparticles in the polystyrene phase. To do this, he tried out various functionalization techniques. Functionalization means that molecules that will render the nanoparticles miscible in the selected phase are added to their surface so that they can be properly dispersed throughout the polymer. The best results were obtained by means of the technique known as "grafting through." "Using the grafting through technique, the nanoparticles are placed in the environment in which styrene polymerization takes place. That way, the polymer sometimes grows from the nanoparticle surface, other particles are trapped between the polymer chains, and free polymer is also created," explains Etxeberria. The result is a material that has an affinity with polystyrene, and which produces the desired homogenous dispersion when blended with the block copolymer.

This has been demonstrated by the measurements carried out on the composite material created: the composite material has the same optical and electrical characteristics that the nanoparticles had initially. In view of the good results of the technique, Etxeberria is now working on other materials, like cellulose.


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Journal References:

  1. Haritz Etxeberria, Iñaki Zalakain, Iñaki Mondragon, Arantxa Eceiza, Galder Kortaberria. Generation of nanocomposites based on polystyrene-grafted CdSe nanoparticles by grafting through and block copolymer. Colloid and Polymer Science, 2013; DOI: 10.1007/s00396-013-2927-8
  2. H. Etxeberria, I. Zalakain, R. Fernandez, G. Kortaberria, I. Mondragon. Controlled placement of polystyrene-grafted CdSe nanoparticles in self-assembled block copolymers. Colloid and Polymer Science, 2012; 291 (3): 633 DOI: 10.1007/s00396-012-2765-0

Cite This Page:

Basque Research. "Obtaining polymers with à la carte optical and electrical properties." ScienceDaily. ScienceDaily, 15 May 2013. <www.sciencedaily.com/releases/2013/05/130515085335.htm>.
Basque Research. (2013, May 15). Obtaining polymers with à la carte optical and electrical properties. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/05/130515085335.htm
Basque Research. "Obtaining polymers with à la carte optical and electrical properties." ScienceDaily. www.sciencedaily.com/releases/2013/05/130515085335.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) — New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins