Featured Research

from universities, journals, and other organizations

Opening doors to foldable electronics with inkjet-printed graphene

Date:
May 20, 2013
Source:
Northwestern University
Summary:
Imagine a bendable tablet computer or an electronic newspaper that could fold to fit in a pocket. The technology for these devices may not be so far off, thanks to new research.

Graphene sheet model, 3-D illustration.
Credit: nobeastsofierce / Fotolia

Imagine a bendable tablet computer or an electronic newspaper that could fold to fit in a pocket.

Related Articles


The technology for these devices may not be so far off. Northwestern University researchers have recently developed a graphene-based ink that is highly conductive and tolerant to bending, and they have used it to inkjet-print graphene patterns that could be used for extremely detailed, conductive electrodes.

The resulting patterns are 250 times more conductive than previous attempts to print graphene-based electronic patterns and could be a step toward low-cost, foldable electronics.

A paper describing the research, "Inkjet Printing of High Conductivity, Flexible Graphene Patterns," was published April 8 in the Journal of Physical Chemistry Letters.

"Graphene has a unique combination of properties that is ideal for next-generation electronics, including high electrical conductivity, mechanical flexibility, and chemical stability," said Mark Hersam, professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science. "By formulating an inkjet-printable ink based on graphene, we now have an inexpensive and scalable path for exploiting these properties in real-world technologies."

Inkjet printing has previously been explored as a method for fabricating transistors, solar cells, and other electronic components. It is inexpensive, capable of printing large areas, and can create patterns on a variety of substrates, making it an attractive option for next-generation electronics.

Inkjet printing with graphene -- ultra-thin sheets of carbon with exceptional strength and conductivity -- is extremely promising, but it has remained a challenge because it is difficult to harvest a sufficient amount of graphene without compromising its electronic properties. Exfoliating, or breaking apart, materials such as graphite often require oxidizing conditions that make the resulting graphene oxide material less conductive than pure carbon. Pristine unoxidized graphene can be achieved through exfoliation, but the process requires solvents whose residues also decrease conductivity.

The Northwestern researchers have developed a new method for mass-producing graphene that maintains its conductivity and can be carried out at room temperature using ethanol and ethyl cellulose to exfoliate graphite. This relatively clean process minimizes residues and results in a powder with a high concentration of nanometer-sized graphene flakes, which is then mixed into a solvent to create the ink.

The researchers demonstrated printing the ink in multiple layers, each 14 nanometers thick, to create precise patterns. The ink's conductivity remains virtually unchanged, even when bent to a great degree, suggesting that graphene inks could be used to create foldable electronic devices in the future.

In addition to Hersam, other authors of the paper are McCormick graduate students Ethan B. Secor and Michael L. Geier and postdoctoral researchers Pradyumna L. Prabhumirashi and Kanan Puntambekar. This work was supported by the Office of Naval Research.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ethan B. Secor, Pradyumna L. Prabhumirashi, Kanan Puntambekar, Michael L. Geier, Mark C. Hersam. Inkjet Printing of High Conductivity, Flexible Graphene Patterns. The Journal of Physical Chemistry Letters, 2013; 4 (8): 1347 DOI: 10.1021/jz400644c

Cite This Page:

Northwestern University. "Opening doors to foldable electronics with inkjet-printed graphene." ScienceDaily. ScienceDaily, 20 May 2013. <www.sciencedaily.com/releases/2013/05/130520154257.htm>.
Northwestern University. (2013, May 20). Opening doors to foldable electronics with inkjet-printed graphene. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/05/130520154257.htm
Northwestern University. "Opening doors to foldable electronics with inkjet-printed graphene." ScienceDaily. www.sciencedaily.com/releases/2013/05/130520154257.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins