Featured Research

from universities, journals, and other organizations

Observation of skyrmions (magnetic vortex structures) in a ferromagnet with centrosymmetry

Date:
May 24, 2013
Source:
National Institute for Materials Science
Summary:
Researchers using Lorentz electron microscopy have shown that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

High-magnification images of nanomagnetic clusters. (a) and (b) are images in which the focus has been shifted from the exact focus to, respectively, the minus side and plus side. (c) is a map of the in-plane magnetization distribution as determined from (a) and (b). The distribution and density of colors represent the direction and strength, respectively, of the in-plane magnetization (see insert figure on lower right). The direction and size of arrows also represent the in-plane magnetization’s direction and strength, respectively. (d) and (e) show the responses of different magnetic clusters to an external magnetic field (B). The direction of the external magnetic field is from the front of the page to the back. The straight green line at the upper right of (e) is a false image made by the edge of the sample.
Credit: Image courtesy of National Institute for Materials Science

Researchers using Lorentz electron microscopy have shown that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

A research group including the NIMS Surface Physics and Structure Unit, Superconducting Properties Unit and others, using Lorentz electron microscopy, has shown that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

Dr. Masahiro Nagao, Researcher (also of Waseda University), Dr. Yeong-Gi So, Researcher (presently at University of Tokyo), Toru Hara, Principal Researcher, and Koji Kimoto, Unit Director, of the Surface Physics and Structure Unit, and Masaaki Isobe, Group Leader of the Superconducting Properties Unit, et al., National Institute for Materials Science (President: Sukekatsu Ushioda), have used Lorentz electron microscopy to show that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

The recently discovered magnetic vortex structures known as magnetic skyrmions have been shown to have very interesting and unprecedented properties, such as a very great anomalous Hall effect and skyrmion motion under ultra-low-density currents. They have raised hopes of their application as new magnetic elements. The formation of skyrmions is thought to require the application of a magnetic field to a magnet that does not have centrosymmetry.

However, it has now been shown for the first time by direct observation with Lorentz electron microscopy that nanomagnetic clusters spontaneously form skyrmion structures even in ferromagnetic manganese oxides where the crystal structures have centrosymmetry. This result suggests the possibility that skyrmion structures might be formed even in nanomagnetic clusters and nanoparticles of various ferromagnets that do not meet the conditions conventionally deemed necessary.

The skyrmions observed in this research indicate a phenomenon in which the magnetic vortex repeatedly inverts between clockwise and counterclockwise at a certain temperature because of thermal fluctuation. It was also found, moreover, that when two skyrmions come close together, they invert to the same vortex direction in synch with each other. This result would seem to provide new knowledge for the development of magnetic elements using the interaction between skyrmions.

The result also points to a method of determining the energy needed for inverting the magnetic vortex of individual nanomagnetic clusters by Lorentz electron microscope observation. This method could potentially be applied widely with nanomagnets and nanomagnetic devices for which it is difficult to determine the energy required for magnetic inversion by ordinary measurement.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Masahiro Nagao, Yeong-Gi So, Hiroyuki Yoshida, Masaaki Isobe, Toru Hara, Kazuo Ishizuka, Koji Kimoto. Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nature Nanotechnology, 2013; 8 (5): 325 DOI: 10.1038/nnano.2013.69

Cite This Page:

National Institute for Materials Science. "Observation of skyrmions (magnetic vortex structures) in a ferromagnet with centrosymmetry." ScienceDaily. ScienceDaily, 24 May 2013. <www.sciencedaily.com/releases/2013/05/130524103459.htm>.
National Institute for Materials Science. (2013, May 24). Observation of skyrmions (magnetic vortex structures) in a ferromagnet with centrosymmetry. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/05/130524103459.htm
National Institute for Materials Science. "Observation of skyrmions (magnetic vortex structures) in a ferromagnet with centrosymmetry." ScienceDaily. www.sciencedaily.com/releases/2013/05/130524103459.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins