Featured Research

from universities, journals, and other organizations

Research effort deep underground could sort out cosmic-scale mysteries

Date:
May 24, 2013
Source:
Oak Ridge National Laboratory
Summary:
Scientists have begun delivery of germanium-76 detectors to an underground laboratory in South Dakota in a team research effort that might explain the puzzling imbalance between matter and antimatter generated by the Big Bang.

The Majorana Demonstrator is being assembled and stored 4,850 feet beneath the earth's surface in enriched copper to limit the amount of background interference from cosmic rays and radioactive isotopes.
Credit: Image courtesy of Oak Ridge National Laboratory

The Department of Energy's Oak Ridge National Laboratory has begun delivery of germanium-76 detectors to an underground laboratory in South Dakota in a team research effort that might explain the puzzling imbalance between matter and antimatter generated by the Big Bang.

Related Articles


"It might explain why we're here at all," said David Radford, who oversees specific ORNL activities in the Majorana Demonstrator research effort. "It could help explain why the matter that we are made of exists."

Radford, a researcher in ORNL's Physics Division and an expert in germanium detectors, has been delivering germanium-76 to Sanford Underground Research Laboratory (SURF) in Lead, S.D., for the project. After navigating a Valentine's Day blizzard on the first two-day drive from Oak Ridge, Radford made a second delivery in March.

ORNL serves as the lead laboratory for the Majorana Demonstrator research effort, a collaboration of research institutions representing the United States, Russia, Japan and Canada. The project is managed by the University of North Carolina's Prof. John Wilkerson, who also has a joint faculty appointment with ORNL.

Research at SURF is being conducted 4,850 feet beneath Earth's surface with the intention of building a 40-kilogram germanium detector, capable of detecting the theorized neutrinoless double beta decay. Detection might help to explain the matter-antimatter imbalance.

Before the detection of the unobserved decay can begin, however, the germanium must first be processed, refined and enriched. Radford coordinated the multistep process, which includes an essential pit stop in Oak Ridge.

The 42.5 kilograms of 86-percent enriched white germanium oxide powder required for the project is valued at $4 million and was transported from a Russian enrichment facility to a secure underground ORNL facility in a specially designed container. The container's special shielding and underground storage limited exposure of the germanium to cosmic rays.

Without such preventative measures, Radford says, "Cosmic rays transmute germanium atoms into long-lived radioactive atoms, at the rate of about two atoms per day per kilogram of germanium. Even those two atoms a day will add to the background in our experiment. So we use underground storage to reduce the exposure to cosmic rays by a factor of 100."

The germanium must further undergo a reduction and purification process at two Oak Ridge companies, Electrochemical Systems, Inc. (ESI) and Advanced Measurement Technology (AMETEK), before being moved to its final destination in South Dakota. ESI works to reduce the powdered germanium oxide to metal germanium bars. ORTEC, a division of AMETEK, further purifies the bars, using the material to grow large single crystals of germanium, and turning those into one-kilogram cylindrical germanium detectors that will be used in the Demonstrator. Once they leave AMETEK, Radford and his team transport the detectors to SURF.

The enrichment process is lengthy. The Majorana Demonstrator project began the partnership with ESI four years ago. To date, ORNL has delivered -- via Radford's two trips -- nine of the enriched detectors, which are valued at about $2 million including the original cost of the enriched germanium oxide powder.

Requiring a total of 30 enriched detectors, the Majorana Demonstrator is not expected to be fully complete and operational until 2015.

Those involved in the Majorana research effort believe its completion and anticipated results will help pave the way for a next-generation detector using germanium-76 with unprecedented sensitivity. The future one-ton detector will help to determine the ratio and masses of conserved and annihilated lepton particles that are theorized to cause the initial imbalance of matter and antimatter from the Big Bang.

"The research effort is the first major step towards building a one-ton detector -- a potentially Nobel-Prize-worthy project," Radford says.

ORNL's partner institutions in the Majorana Demonstration Project are Black Hills State University, Duke University, Institute for Theoretical and Experimental Physics (Russia), Joint Institute for Nuclear Research (Russia), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, North Carolina State University, Osaka (Japan) University, Pacific Northwest National Laboratory, South Dakota School of Mines and Technology, Triangle Universities Nuclear Laboratory, Centre for Particle Physics (Canada), University of Chicago, University of North Carolina, University of South Carolina, University of South Dakota, University of Tennessee and the Center for Experimental Nuclear Physics and Astrophysics.

The Majorana Demonstrator research project is funded by the National Science Foundation and the Department of Energy's Office of Nuclear Physics.


Story Source:

The above story is based on materials provided by Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Oak Ridge National Laboratory. "Research effort deep underground could sort out cosmic-scale mysteries." ScienceDaily. ScienceDaily, 24 May 2013. <www.sciencedaily.com/releases/2013/05/130524134308.htm>.
Oak Ridge National Laboratory. (2013, May 24). Research effort deep underground could sort out cosmic-scale mysteries. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/05/130524134308.htm
Oak Ridge National Laboratory. "Research effort deep underground could sort out cosmic-scale mysteries." ScienceDaily. www.sciencedaily.com/releases/2013/05/130524134308.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins