Science News

... from universities, journals, and other research organizations

Sensitive New Microphone Modeled On Fly Ear

May 30, 2013 — Using the sensitive ears of a parasitic fly for inspiration, a group of researchers has created a new type of microphone that achieves better acoustical performance than what is currently available in hearing aids. The scientists will present their results at the 21st International Congress on Acoustics, held June 2-7 in Montreal.


Share This:

Ronald Miles, Distinguished Professor of Mechanical Engineering at Binghamton University, studies the hearing of Ormia ochracea, a house fly-sized insect that is native to the southeast United States and Central America. Unlike most other flies, Ormia ochracea has eardrums that sense sound pressure, as do our ears, and they can hear "quite well," says Miles. The female flies use their "remarkable" directional hearing to locate singing male crickets, on which they deposit their larvae.

Previously, Miles and colleagues Daniel Robert and Ronald Hoy described the mechanism by which the fly achieves its directional hearing, despite its small size. Now Miles and his group have designed a new microphone inspired by the fly's ears.

The new design uses a microelectromechanical microphone with a 1 mm by 3 mm diaphragm that is designed to rotate about a central pivot in response to sound pressure gradients. The motion of the diaphragm is detected using optical sensors. To minimize the adverse effects of resonances on the response, Miles and his colleagues used a feedback system to achieve so-called active Q control.

"Q control basically is an electronic feedback control system to introduce electronic damping," Miles explains. "You don't want a microphone diaphragm to ring like a bell. It turns out that in order to achieve a very low noise floor -- which is the quietest sound that can be detected without the signal being buried in the microphone's noise -- it is important to minimize any passive damping in these sensors. If you do that, the diaphragm will resonate at its natural frequency. We are the first group to show that you can use this sort of electronic damping in a microphone without adversely affecting the noise floor of the microphone."

Indeed, the noise floor of the fly-inspired microphone is about 17 decibels lower than what can be achieved using a pair of low-noise hearing aid microphones to create a directional hearing aid. The new design could be used in applications ranging from hearing aids and cell phones to surveillance and acoustic noise control systems, Miles says, and "could easily be made as small as the fly's ear."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Acoustical Society of America (ASA), via Newswise.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Helping The Deaf Hear

Otolaryngologists develop a new, implantable hearing aid. It works with a transmitter worn behind the ear that sends sound vibrations from her deaf. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?