Featured Research

from universities, journals, and other organizations

Sensitive new microphone modeled on fly ear

Date:
May 30, 2013
Source:
Acoustical Society of America (ASA)
Summary:
Using the sensitive ears of a parasitic fly for inspiration, a group of researchers has created a new type of microphone that achieves better acoustical performance than what is currently available in hearing aids.

Using the sensitive ears of a parasitic fly for inspiration, a group of researchers has created a new type of microphone that achieves better acoustical performance than what is currently available in hearing aids. The scientists will present their results at the 21st International Congress on Acoustics, held June 2-7 in Montreal.

Related Articles


Ronald Miles, Distinguished Professor of Mechanical Engineering at Binghamton University, studies the hearing of Ormia ochracea, a house fly-sized insect that is native to the southeast United States and Central America. Unlike most other flies, Ormia ochracea has eardrums that sense sound pressure, as do our ears, and they can hear "quite well," says Miles. The female flies use their "remarkable" directional hearing to locate singing male crickets, on which they deposit their larvae.

Previously, Miles and colleagues Daniel Robert and Ronald Hoy described the mechanism by which the fly achieves its directional hearing, despite its small size. Now Miles and his group have designed a new microphone inspired by the fly's ears.

The new design uses a microelectromechanical microphone with a 1 mm by 3 mm diaphragm that is designed to rotate about a central pivot in response to sound pressure gradients. The motion of the diaphragm is detected using optical sensors. To minimize the adverse effects of resonances on the response, Miles and his colleagues used a feedback system to achieve so-called active Q control.

"Q control basically is an electronic feedback control system to introduce electronic damping," Miles explains. "You don't want a microphone diaphragm to ring like a bell. It turns out that in order to achieve a very low noise floor -- which is the quietest sound that can be detected without the signal being buried in the microphone's noise -- it is important to minimize any passive damping in these sensors. If you do that, the diaphragm will resonate at its natural frequency. We are the first group to show that you can use this sort of electronic damping in a microphone without adversely affecting the noise floor of the microphone."

Indeed, the noise floor of the fly-inspired microphone is about 17 decibels lower than what can be achieved using a pair of low-noise hearing aid microphones to create a directional hearing aid. The new design could be used in applications ranging from hearing aids and cell phones to surveillance and acoustic noise control systems, Miles says, and "could easily be made as small as the fly's ear."


Story Source:

The above story is based on materials provided by Acoustical Society of America (ASA). Note: Materials may be edited for content and length.


Cite This Page:

Acoustical Society of America (ASA). "Sensitive new microphone modeled on fly ear." ScienceDaily. ScienceDaily, 30 May 2013. <www.sciencedaily.com/releases/2013/05/130530152851.htm>.
Acoustical Society of America (ASA). (2013, May 30). Sensitive new microphone modeled on fly ear. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/05/130530152851.htm
Acoustical Society of America (ASA). "Sensitive new microphone modeled on fly ear." ScienceDaily. www.sciencedaily.com/releases/2013/05/130530152851.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins