Featured Research

from universities, journals, and other organizations

Lead acts to trigger schizophrenia

Date:
May 31, 2013
Source:
Columbia University's Mailman School of Public Health
Summary:
Mice engineered with a human gene for schizophrenia and exposed to lead during early life exhibited behaviors and structural changes in their brains consistent with schizophrenia. Scientists say their findings suggest a synergistic effect between lead exposure and a genetic risk factor, and open an avenue to better understanding the complex gene-environment interactions that put people at risk for schizophrenia and other mental disorders.

Mice engineered with a human gene for schizophrenia and exposed to lead during early life exhibited behaviors and structural changes in their brains consistent with schizophrenia. Scientists at Columbia University's Mailman School of Public Health and the Johns Hopkins University School of Medicine say their findings suggest a synergistic effect between lead exposure and a genetic risk factor, and open an avenue to better understanding the complex gene-environment interactions that put people at risk for schizophrenia and other mental disorders.

Results appear online in Schizophrenia Bulletin.

Going back to 2004, work by scientists at the Mailman School suggested a connection between prenatal lead exposure in humans and increased risk for schizophrenia later in life. But a big question remained: How could lead trigger the disease? Based on his own research, Tomas R. Guilarte, PhD, senior author of the new study, believed the answer was in the direct inhibitory effect of lead on the N-methyl-D-aspartate receptor (NMDAR), a synaptic connection point important to brain development, learning, and memory. His research in rodents found that exposure to lead blunted the function of the NMDAR. The glutamate hypothesis of schizophrenia postulates that a deficit in glutamate neurotransmission and specifically hypoactivity of the NMDAR can explain a significant portion of the dysfunction in schizophrenia.

In the new study, Dr. Guilarte, professor and chair of the department of Environmental Health Sciences at the Mailman School, and his co-investigators focused on mice engineered to carry the mutant form of Disrupted-in-Schizophrenia-1 (DISC1), a gene that is a risk factor for the disease in humans. Beginning before birth, half of the mutant DISC1 mice were fed a diet with lead, and half were given a normal diet. A second group of normal mice not expressing the mutant DISC1 gene were also split into the two feeding groups. All mice were put through a battery of behavioral tests and their brains were examined using MRI.

Mutant mice exposed to lead and given a psychostimulant exhibited elevated levels of hyperactivity and were less able to suppress a startle in response to a loud noise after being given an acoustic warning. Their brains also had markedly larger lateral ventricles -- empty spaces containing cerebrospinal fluid -- compared with other mice. These results mirror what is known about schizophrenia in humans.

While the role of genes in schizophrenia and mental disorders is well established, the effect of toxic chemicals in the environment is only just beginning to emerge. The study's results focus on schizophrenia, but implications could be broader.

"We're just scratching the surface," says Dr. Guilarte. "We used lead in this study, but there are other environmental toxins that disrupt the function of the NMDAR." One of these is a family of chemicals in air pollution called polycyclic aromatic hydrocarbons or PAHs. "Similarly, any number of genes could be in play," adds Dr. Guilarte, noting that DISC1 is among many implicated in schizophrenia.

Future research may reveal to what extent schizophrenia is determined by environmental versus genetic factors or their interactions, and what other mental problems might be in the mix. One ongoing study by Dr. Guilarte is looking at whether lead exposure alone can contribute to deficits of one specialized type of neuron called parvalbumin-positive GABAergic interneuron that is known to be affected in the brain of schizophrenia patients. Scientists are also interested to establish the critical window for exposure -- whether in utero or postnatal, or both.

"The animal model provides a way forward to answer important questions about the physiological processes underlying schizophrenia," says Dr. Guilarte.


Story Source:

The above story is based on materials provided by Columbia University's Mailman School of Public Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Abazyan, J. Dziedzic, K. Hua, S. Abazyan, C. Yang, S. Mori, M. V. Pletnikov, T. R. Guilarte. Chronic Exposure of Mutant DISC1 Mice to Lead Produces Sex-Dependent Abnormalities Consistent With Schizophrenia and Related Mental Disorders: A Gene-Environment Interaction Study. Schizophrenia Bulletin, 2013; DOI: 10.1093/schbul/sbt071

Cite This Page:

Columbia University's Mailman School of Public Health. "Lead acts to trigger schizophrenia." ScienceDaily. ScienceDaily, 31 May 2013. <www.sciencedaily.com/releases/2013/05/130531114735.htm>.
Columbia University's Mailman School of Public Health. (2013, May 31). Lead acts to trigger schizophrenia. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/05/130531114735.htm
Columbia University's Mailman School of Public Health. "Lead acts to trigger schizophrenia." ScienceDaily. www.sciencedaily.com/releases/2013/05/130531114735.htm (accessed April 21, 2014).

Share This



More Mind & Brain News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins