## Featured Research

from universities, journals, and other organizations

# Surges in latent infections: Mathematical analysis of viral blips

Date:
May 31, 2013
Source:
Society for Industrial and Applied Mathematics
Summary:
Recurrent infection is a common feature of persistent viral diseases. It includes episodes of high viral production interspersed by periods of relative quiescence. These quiescent or silent stages are hard to study with experimental models. Mathematical analysis can help fill in the gaps.

Recurrent infection is a common feature of persistent viral diseases. It includes episodes of high viral production interspersed by periods of relative quiescence. These quiescent or silent stages are hard to study with experimental models. Mathematical analysis can help fill in the gaps.

In a paper titled Conditions for Transient Viremia in Deterministic in-Host Models: Viral Blips Need No Exogenous Trigger, published last month in the SIAM Journal on Applied Mathematics, authors Wenjing Zhang, Lindi M. Wahl, and Pei Yu present a model to study persistent infections.

In latent infections (a type of persistent infection), no infectious cells can be observed during the silent or quiescent stages, which involve low-level viral replication. These silent periods are often interrupted by unexplained intermittent episodes of active viral production and release. "Viral blips" associated with human immunodeficiency virus (HIV) infections are a good example of such active periods.

"Mathematical modeling has been critical to our understanding of HIV, particularly during the clinically latent stage of infection," says author Pei Yu. "The extremely rapid turnover of the viral population during this quiescent stage of infection was first demonstrated through modeling (David Ho, Nature, 1995), and came as a surprise to the clinical community. This was seen as one of the major triumphs of mathematical immunology: an extremely important result through the coupling of patient data and an appropriate modeling approach."

Recurrent infections also often occur due to drug treatment. For example, active antiretroviral therapy for HIV can suppress the levels of the virus to below-detection limits for months. Though much research has focused on these viral blips, their causes are not well understood.

Previous mathematical models have analyzed the reasons behind such viral blips, and have proposed various possible explanations. An early model considered the activation of T cells, a type of immune cell, in response to antigens. Later models attributed blips to recurrent activation of latently-infected lymphocytes, which are a broader class of immune cells that include T-cells. Asymmetric division of such latently-infected cells, resulting in activated cells and latently-infected daughter cells were seen to elicit blips in another study.

These previous models have used exogenous triggers such as stochastic or transient stimulation of the immune system in order to generate viral blips.

In this paper, the authors use dynamical systems theory to reinvestigate in-host infection models that exhibit viral blips. They demonstrate that no such exogenous triggers are needed to generate viral blips, and propose that blips are produced as part of the natural behavior of the dynamical system. The key factor for this behavior is an infection rate which increases but saturates with the extent of infection. The authors show that such an increasing, saturating infection rate alone is sufficient to produce long periods of quiescence interrupted by rapid replication, or viral blips.

These findings are consistent with clinical observations where even patients on the best currently-available HIV therapy periodically exhibit transient episodes of viremia (high viral load in the blood). A number of reasons have been proposed for this phenomenon, such as poor adherence to therapy or the activation of a hidden reservoir of HIV-infected cells. "If adherence is the underlying factor, viral blips are triggered when the patient misses a dose or several doses of the prescribed drugs," explains Yu. "If activation is the cause, blips may be triggered by exposure to other pathogens, which activate the immune system. Our work demonstrates that viral blips might simply occur as a natural cycle of the underlying dynamical system, without the need for any special trigger."

The authors propose simple 2- and 3-dimensional models that can produce viral blips. Linear or constant infection rates do not lead to blips in 2-, 3- or 4-dimensional models studied by the authors. However, a 5-dimensional immunological model reveals that a system with a constant infection rate can generate blips as well.

The models proposed in the paper can be used to study a variety of viral diseases that exhibit recurrent infections. "We are currently extending this approach to other infections, and more broadly to other diseases that display recurrence," says Yu. "For example, many autoimmune diseases recur and relapse over a timescale of years, and once again, the 'triggers' for episodes of recurrence are unknown. We would like to understand more fully what factors of the underlying dynamical system might be driving these episodic patterns."

Story Source:

The above story is based on materials provided by Society for Industrial and Applied Mathematics. Note: Materials may be edited for content and length.

Journal Reference:

1. Wenjing Zhang, Lindi M. Wahl, Pei Yu. Conditions for Transient Viremia in Deterministic in-Host Models: Viral Blips Need No Exogenous Trigger. SIAM Journal on Applied Mathematics, 2013; 73 (2): 853 DOI: 10.1137/120884535

Society for Industrial and Applied Mathematics. "Surges in latent infections: Mathematical analysis of viral blips." ScienceDaily. ScienceDaily, 31 May 2013. <www.sciencedaily.com/releases/2013/05/130531151351.htm>.
Society for Industrial and Applied Mathematics. (2013, May 31). Surges in latent infections: Mathematical analysis of viral blips. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/05/130531151351.htm
Society for Industrial and Applied Mathematics. "Surges in latent infections: Mathematical analysis of viral blips." ScienceDaily. www.sciencedaily.com/releases/2013/05/130531151351.htm (accessed July 22, 2014).

## More Health & Medicine News

Tuesday, July 22, 2014

### Featured Research

from universities, journals, and other organizations

### Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's \$1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

### Gilead's \$1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
\$23.6 Billion Awarded To Widow In Smoking Lawsuit

### \$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) — Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Tooth Plaque Provides Insight Into Diets Of Ancient People

### Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) — Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Contaminated Water Kills 3 Babies in South African Town

### Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) — Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP

## Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):

Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

## In Other News

... from NewsDaily.com

Save/Print:
Share:

## Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

## Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

## Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web