Featured Research

from universities, journals, and other organizations

Scientists create novel silicon electrodes that improve lithium-ion batteries

Date:
June 4, 2013
Source:
Stanford University
Summary:
Scientists have dramatically improved the performance of lithium-ion batteries by creating novel electrodes made of silicon and conducting polymer hydrogel, a spongy material similar to that used in contact lenses and other household products. The scientists developed a new technique for producing low-cost, silicon-based batteries with potential applications for a wide range of electrical devices.

This is an illustration of a new battery electrode made from a composite of hydrogel and silicon nanoparticles (Si NP). Each Si NP is encapsulated in a conductive polymer surface coating and connected to a three-dimensional hydrogel framework.
Credit: Yi Cui, Stanford University

Stanford University scientists have dramatically improved the performance of lithium-ion batteries by creating novel electrodes made of silicon and conducting polymer hydrogel, a spongy material similar to that used in contact lenses and other household products.

Writing in the June 4 edition of the journal Nature Communications, the scientists describe a new technique for producing low-cost, silicon-based batteries with potential applications for a wide range of electrical devices.

"Developing rechargeable lithium-ion batteries with high energy density and long cycle life is of critical importance to address the ever-increasing energy storage needs for portable electronics, electric vehicles and other technologies," said study co-author Zhenan Bao, a professor of chemical engineering at Stanford.

To find a practical, inexpensive material that increases the storage capacity of lithium-ion batteries, Bao and her Stanford colleagues turned to silicon -- an abundant, environmentally benign element with promising electronic properties.

"We've been trying to develop silicon-based electrodes for high-capacity lithium-ion batteries for several years," said study co-author Yi Cui, an associate professor of materials science and engineering at Stanford. "Silicon has 10 times the charge storage capacity of carbon, the conventional material used in lithium-ion electrodes. The problem is that silicon expands and breaks."

Studies have shown that silicon particles can undergo a 400-percent volume expansion when combined with lithium. When the battery is charged or discharged, the bloated particles tend to fracture and lose electrical contact. To overcome these technical constraints, the Stanford team used a fabrication technique called in situ synthesis polymerization that coats the silicon nanoparticles within the conducting hydrogel.

This technique allowed the scientists to create a stable lithium-ion battery that retained a high storage capacity through 5,000 cycles of charging and discharging.

"We attribute the exceptional electrochemical stability of the battery to the unique nanoscale architecture of the silicon-composite electrode," Bao said.

Using a scanning electron microscope, the scientists discovered that the porous hydrogel matrix is riddled with empty spaces that allow the silicon nanoparticles to expand when lithium is inserted. This matrix also forms a three-dimensional network that creates an electronically conducting pathway during charging and discharging.

"It turns out that hydrogel has binding sites that latch onto silicon particles really well and at the same time provide channels for the fast transport of electrons and lithium ions," explained Cui, a principal investigator with the Stanford Institute for Materials and Energy Sciences at the SLAC National Accelerator Laboratory. "That makes a very powerful combination."

A simple mixture of hydrogel and silicon proved far less effective than the in situ synthesis polymerization technique. "Making the hydrogel first and then mixing it with the silicon particles did not work well," Bao said. "It required an additional step that actually reduced the battery's performance. With our technique, each silicon nanoparticle is encapsulated within a conductive polymer surface coating and is connected to the hydrogel framework. That improves the battery's overall stability."

Hydrogel primarily consists of water, which can cause lithium-ion batteries to ignite -- a potential problem that the research team had to address. "We utilized the three-dimensional network property of the hydrogel in the electrode, but in the final production phase, the water was removed," Bao said. "You don't want water inside a lithium-ion battery."

Although a number of technical issues remain, Cui is optimistic about potential commercial applications of the new technique to create electrodes made of silicon and other materials.

"The electrode fabrication process used in the study is compatible with existing battery manufacturing technology," he said. "Silicon and hydrogel are also inexpensive and widely available. These factors could allow high-performance silicon-composite electrodes to be scaled up for manufacturing the next generation of lithium-ion batteries. It's a very simple approach that's led to a very powerful result."


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by Mark Shwartz. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hui Wu, Guihua Yu, Lijia Pan, Nian Liu, Matthew T. McDowell, Zhenan Bao, Yi Cui. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 2013; 4 DOI: 10.1038/ncomms2941

Cite This Page:

Stanford University. "Scientists create novel silicon electrodes that improve lithium-ion batteries." ScienceDaily. ScienceDaily, 4 June 2013. <www.sciencedaily.com/releases/2013/06/130604094703.htm>.
Stanford University. (2013, June 4). Scientists create novel silicon electrodes that improve lithium-ion batteries. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/06/130604094703.htm
Stanford University. "Scientists create novel silicon electrodes that improve lithium-ion batteries." ScienceDaily. www.sciencedaily.com/releases/2013/06/130604094703.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins