Featured Research

from universities, journals, and other organizations

Detecting disease with a smartphone accessory

Date:
June 4, 2013
Source:
The Optical Society
Summary:
Engineers have created a new optical sensor that plugs in to a smartphone and, using disposable microfluidic chips, allows for inexpensive in-the-field diagnosis of Kaposi's sarcoma, a cancer linked to AIDS.

The addition of target viral DNA causes the nanoparticles to form aggregate "clumps," which leads to a change in their color.
Credit: Matthew Mancuso

As antiretroviral drugs that treat HIV have become more commonplace, the incidence of Kaposi's sarcoma, a type of cancer linked to AIDS, has decreased in the United States. The disease, however, remains prevalent in sub-Saharan Africa, where poor access to medical care and lab tests only compound the problem. Now, Cornell University engineers have created a new smartphone-based system, consisting of a plug-in optical accessory and disposable microfluidic chips, for in-the-field detection of the herpes virus that causes Kaposi's. "The accessory provides an ultraportable way to determine whether or not viral DNA is present in a sample," says mechanical engineer David Erickson, who developed the technique along with his graduate student, biomedical engineer Matthew Mancuso. The technique could also be adapted for use in detecting a range of other conditions, from E. coli infections to hepatitis.

Mancuso will describe the work at the Conference on Lasers and Electro Optics (CLEO: 2013), taking place June 9-14 in San Jose, Calif.

Unlike other methods that use smartphones for diagnostic testing, this new system is chemically based and does not use the phone's built-in camera. Instead, gold nanoparticles are combined (or "conjugated") with short DNA snippets that bind to Kaposi's DNA sequences, and a solution with the combined particles is added to a microfluidic chip. In the presence of viral DNA, the particles clump together, which affects the transmission of light through the solution. This causes a color change that can be measured with an optical sensor connected to a smartphone via a micro-USB port. When little or no Kaposi's virus DNA is present, the nanoparticle solution is a bright red; at higher concentrations, the solution turns a duller purple, providing a quick method to quantify the amount of Kaposi's DNA.

The main advantage of the system compared to previous Kaposi's detection methods is that users can diagnose the condition with little training. "Expert knowledge is required for almost every other means of detecting Kaposi's sarcoma," Mancuso says. "This system doesn't require that level of expertise."

Erickson and Mancuso are now collaborating with experts on Kaposi's at New York City's Weill Cornell Medical College to create a portable system for collecting, testing, and diagnosing samples that could be available for use in the developing world by next year. The team's start-up company, vitaMe Technologies, is commercializing similar smartphone diagnostic technologies for domestic use.

Detecting Kaposi's sarcoma is not the only goal, Mancuso says. "Nanoparticle assays similar to the one used in our work can target DNA from many different diseases," such as methicillin-resistant Staphylococcus aureus (MRSA), a bacterium responsible for several difficult-to-treat infections in humans, and syphilis. The smartphone reader could also work with other color-changing reactions, such as the popular enzyme-linked immunosorbent assays (ELISA), a common tool in medicine to test for HIV, hepatitis, food allergens, and E. coli. The lab also has created smartphone accessories for use with the color-changing strips in pH and urine assays. "These accessories could form the basis of a simple, at-home, personal biofluid health monitor," Mancuso says.

CLEO: 2013 presentation AM3M.2. "Smartphone Based Optical Detection of Kaposi's Sarcoma Associated Herpesvirus DNA" by David Erickson is at 2 p.m. on Monday, June 10 at the Marriott San Jose.


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Cite This Page:

The Optical Society. "Detecting disease with a smartphone accessory." ScienceDaily. ScienceDaily, 4 June 2013. <www.sciencedaily.com/releases/2013/06/130604113959.htm>.
The Optical Society. (2013, June 4). Detecting disease with a smartphone accessory. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/06/130604113959.htm
The Optical Society. "Detecting disease with a smartphone accessory." ScienceDaily. www.sciencedaily.com/releases/2013/06/130604113959.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins