Featured Research

from universities, journals, and other organizations

Neuronal regeneration and the two-part design of nerves

Date:
June 5, 2013
Source:
University of Michigan
Summary:
Researchers have evidence that a single gene controls both halves of nerve cells, and their research demonstrates the need to consider that design in the development of new treatments for regeneration of nerve cells.

A neuron contains two sets of protrusions of different functions: dendrites (shown in green) receive signals from other neurons or sensory stimuli, whereas the axons (shown in purple) pass signals to other neurons or muscles. Such a two-part design serves as a basis for the functioning neural networks inside of our brains, in a way that is similar to diodes in electric circuits.
Credit: Xin Wang

Researchers at the University of Michigan have evidence that a single gene controls both halves of nerve cells, and their research demonstrates the need to consider that design in the development of new treatments for regeneration of nerve cells.

A paper published online in PLOS Biology by U-M Life Sciences Institute faculty member Bing Ye and colleagues shows that manipulating genes of the fruit fly Drosophila to promote the growth of one part of the neuron simultaneously stunts the growth of the other part.

Understanding this bimodal nature of neurons is important for researchers developing therapies for spinal cord injury, neurodegeneration and other nervous system diseases, Ye said.

Nerve cells look strikingly like trees, with a crown of "branches" converging at a "trunk." The branches, called dendrites, input information from other neurons into the nerve cell. The trunk, or axon, transmits the signal to the next cell.

"If you want to regenerate an axon to repair an injury, you have to take care of the other end, too," said Ye, assistant professor in the Department of Cell and Developmental Biology at the U-M Medical School.

The separation of the nerve cell into these two parts is so fundamental to neuroscience that it's known as the "neuron doctrine," but how exactly neurons create, maintain and regulate these two separate parts and functions is still largely unknown.

While the body is growing, the neuronal network grows rapidly. But nerve cells don't divide and replicate like other cells in the body (instead, a specific type of stem cell creates them). Adult nerve cells appear to no longer have the drive to grow, so the loss of neurons due to injury or neurodegeneration can be permanent.

Ye's paper highlights the bimodal nature of neurons by explaining how a kinase that promotes axon growth surprisingly has the opposite effect of impeding dendrite growth of the same cell.

In the quest to understand the fundamentals of nerve cell growth in order to stimulate regrowth after injury, scientists have identified the genes responsible for axon growth and were able to induce dramatic growth of the long "trunk" of the cell, but less attention has been given to dendrites.

There are technical reasons that studying axons is easier than studying dendrites: The bundle of axons in a nerve is easier to track under the microscope, but to get an image of dendrites would require labeling single neurons.

Ye's lab circumvented that obstacle by using Drosophila as a model. Using this simple model of the nervous system, the scientists were able to reliably label both axons and dendrites of single neurons and see what happened to nerve cells with various mutations of genes that are shared between the flies and humans.

One of the genes shared by Drosophila and people is the one that makes a protein called Dual Lucine Zipper Kinase, or DLK. As described previously by other groups, DLK is a product of the gene responsible for axon growth. Cells with more of the protein had very long axons, and those without the gene or protein had no regeneration after nerve injury. The DLK kinase seemed a promising target for therapies to regenerate nerve cells.

However, Ye's lab found that the kinase had the opposite effect on the dendrites: Lots of DLK leads to diminished dendrites.

"This in vivo evidence of bimodal control of neuronal growth calls attention to the need to look at the other side of a neuron in terms of developing new therapies," Ye said. "If we use this kinase, DLK, as a drug target for axon growth, we'll have to figure out a way to block its effect on dendrites."

Ye's co-authors on the paper were Xin Wang, Jung Hwan Kim, Mouna Bazzi and Sara Robinson from the U-M Life Sciences Institute and Catherine Collins from the Department of Molecular, Cellular and Developmental Biology at the U-M College of Literature, Science, and the Arts.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xin Wang, Jung Hwan Kim, Mouna Bazzi, Sara Robinson, Catherine A. Collins, Bing Ye. Bimodal Control of Dendritic and Axonal Growth by the Dual Leucine Zipper Kinase Pathway. PLoS Biology, 2013; 11 (6): e1001572 DOI: 10.1371/journal.pbio.1001572

Cite This Page:

University of Michigan. "Neuronal regeneration and the two-part design of nerves." ScienceDaily. ScienceDaily, 5 June 2013. <www.sciencedaily.com/releases/2013/06/130605090700.htm>.
University of Michigan. (2013, June 5). Neuronal regeneration and the two-part design of nerves. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2013/06/130605090700.htm
University of Michigan. "Neuronal regeneration and the two-part design of nerves." ScienceDaily. www.sciencedaily.com/releases/2013/06/130605090700.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Quintuplets Head Home

Texas Quintuplets Head Home

Reuters - US Online Video (Aug. 1, 2014) After four months in the hospital, the first quintuplets to be born at Baylor University Medical Center head home. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Patient Coming to U.S. for Treatment

Ebola Patient Coming to U.S. for Treatment

Reuters - US Online Video (Aug. 1, 2014) A U.S. aid worker infected with Ebola while working in West Africa will be treated in a high security ward at Emory University in Atlanta. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins