Featured Research

from universities, journals, and other organizations

How do immune cells detect infections?

Date:
June 7, 2013
Source:
McGill University
Summary:
Researchers are using computer simulations to shed light on how immune cells may identify foreign antigens.

Immune T-cells have to distinguish foreign ligands (red) from self-ligands (green) using an internal biochemical toolbox.
Credit: Image courtesy of McGill University

How do immune cells manage to sort through vast numbers of similar-looking proteins within the body to detect foreign invaders and fight infections?

"For immune cells, singling out foreign proteins is like looking for a needle in a haystack -- where the needle may look very much like a straw, and where some straws may also look very much like a needle," notes McGill University physics professor Paul François.

Understanding how immune cells tackle this formidable challenge is important, because it could provide crucial insights into the understanding of immune diseases, from AIDS to auto-immune disorders.

In a study published May 21 in the journal Physical Review Letters, François and McGill graduate student Jean-Benoît Lalanne used computational tools to examine what kind of solutions immune systems may use to detect small concentrations of foreign antigens (characteristic of potentially harmful infections) in a sea of "self-antigens" normally present at the surface of cells.

The researchers' computer simulations yielded a surprisingly simple solution related to the well-known phenomenon of biochemical adaptation -- a general biochemical mechanism that enable organisms to cope with varying environmental conditions.

To find solutions, the computer uses an algorithm inspired by Darwinian evolution. This algorithm, designed previously within the François research group, randomly generates mathematical models of biochemical networks. It then scores them by comparing properties of these networks to predefined properties of the immune system. Networks with best scores are duplicated in the next generation and mutated, and the process is iterated over many simulated "generations" until networks reach a perfect score.

In this case, almost all solutions found were very similar, sharing a common core structure or motif.

"Our approach provides a simpler theoretical framework and understanding of what happens" as immune cells sort through the "haystack" to detect foreign antigens and trigger the immune response, François says. "Our model shares many similarities with real immune networks. Strikingly, the simplest evolved solution we found has both similar characteristics and some of the blind spots of real immune cells we studied in a previous collaborative study with the groups of Grégoire Altan-Bonnet (Memorial Sloane Kettering, New York), Eric Siggia (Rockefeller University, New York) and Massimo Vergassola (Pasteur Institute, Paris)."

Funding for the research was provided by the Natural Sciences and Engineering Research Council of Canada and the Human Frontier Science Program.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jean-Benoît Lalanne, Paul François. Principles of Adaptive Sorting Revealed by In Silico Evolution. Physical Review Letters, 2013; 110 (21) DOI: 10.1103/PhysRevLett.110.218102

Cite This Page:

McGill University. "How do immune cells detect infections?." ScienceDaily. ScienceDaily, 7 June 2013. <www.sciencedaily.com/releases/2013/06/130607130557.htm>.
McGill University. (2013, June 7). How do immune cells detect infections?. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/06/130607130557.htm
McGill University. "How do immune cells detect infections?." ScienceDaily. www.sciencedaily.com/releases/2013/06/130607130557.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) — Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins