Featured Research

from universities, journals, and other organizations

Carbon nanotubes for molecular magnetic resonances

Date:
June 9, 2013
Source:
ICFO-The Institute of Photonic Sciences
Summary:
Researchers have developed a new technique for measuring very weak forces on a molecular scale. Thanks to the use of carbon nanotubes, they have achieved the highest level of sensitivity to date. These results open the door for magnetic resonance imaging of individual molecules.

These ICFO researchers are: Adrian Bachtold, Joel Moser, Johannes Gόttinger.
Credit: ICFO

More resistant than steel, carbon nanotubes are one of the strongest and hardest materials known. Their impressive electrical and thermal properties make them an extremely versatile material. Hollow on the inside and only one-atom thick, they lend themselves to a large variety of potential uses, from tennis rackets and bulletproof vests, to electronic components and energy storage devices. New research shows that they may also hold the potential for revolutionizing medical research with magnetic resonance imaging of individual molecules.

Scientists from ICFO- Institute of Photonic Science, in collaboration with researchers from the Catalan Institute of Nanotechnology (ICN2) and the University of Michigan, have been able to measure weak forces with sensitivity 50 times higher than what has been achieved to date. This significant improvement represents a turning point in measuring very weak forces and opens the door for magnetic resonance imaging at the molecular scale. Dr. Adrian Bachtold, who began this research at the Catalan Institute of Nanotechnology before transferring his research group to ICFO, explains in an article published in Nature Nanotechnology that they were able to prepare the carbon nanotubes to act as probes that vibrate with an intensity proportional to an electrostatic force. With the use of ultra-low-noise electronics, the group led by Bachtold was able to measure the amplitude of the vibration of these nanotubes and thus surmise the intensity of the electrostatic force.

"Carbon nanotubes are similar to guitar strings which vibrate in response to the force applied. However, in the case of our experiment, the forces that cause the vibration are extremely small, similar to the gravitational force created between two people 4500 km apart," explains Bachtold. In the last ten years scientists have made only modest improvements in the sensitivity of the measurement of very weak forces. This new discovery marks a before and after and points to carbon nanotubes playing an important role in future technologies for MRIs of individual molecules.

Conventional magnetic resonance imaging registers the spin of atomic nuclei throughout our bodies which have been previously excited by an external electromagnetic field. Based on the global response of all atoms, it is possible to monitor and diagnose the evolution of certain diseases. However, this conventional diagnostic technique has a resolution of a few millimeters. Smaller objects have an insufficient total number of atoms to allow for the observation of the response signals.

"The results presented are very promising for measuring the force created by each individual atom and consequently its spin. In the future this technique could revolutionize medical imaging" concludes Bachtold.


Story Source:

The above story is based on materials provided by ICFO-The Institute of Photonic Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Moser, J. Gόttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, A. Bachtold. Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotechnology, 2013; DOI: 10.1038/NNANO.2013.97

Cite This Page:

ICFO-The Institute of Photonic Sciences. "Carbon nanotubes for molecular magnetic resonances." ScienceDaily. ScienceDaily, 9 June 2013. <www.sciencedaily.com/releases/2013/06/130609195707.htm>.
ICFO-The Institute of Photonic Sciences. (2013, June 9). Carbon nanotubes for molecular magnetic resonances. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/06/130609195707.htm
ICFO-The Institute of Photonic Sciences. "Carbon nanotubes for molecular magnetic resonances." ScienceDaily. www.sciencedaily.com/releases/2013/06/130609195707.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) — Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) — Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) — A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) — The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins