Featured Research

from universities, journals, and other organizations

Chemical nanoengineering: Designing drugs controlled by light

Date:
June 18, 2013
Source:
Institute for Research in Biomedicine-IRB
Summary:
A new breakthrough will help with the development of light-regulated therapeutic molecules.

Researchers at IRB Barcelona and IBEC design the first peptides regulated by light to modulate biological processes.
Credit: Copyright Laura Nevola

The scientific cooperation between chemists, biotechnologists and physicists from various Catalan institutes, headed by Pau Gorostiza, from the Institute for Bioengineering of Catalonia (IBEC), and Ernest Giralt, from the Institute for Research in Biomedicine (IRB Barcelona), has led to a breakthrough that will favor the development of light-regulated therapeutic molecules.

The "Design, synthesis and structure of peptides and proteins" lab headed by Dr. Giralt, also senior professor at the University of Barcelona and holder of the 2011 Spanish National Research Prize, has synthesized two peptides (small proteins), which, on irradiation with light, change shape, thereby allowing or preventing an specific protein-protein interaction. The association of these two proteins is required for endocytosis, a process by which cells allow molecules to cross the cell membrane and enter. The Italian scientist Laura Nevola, postdoctoral researcher who works in Dr. Giralt's lab, and Andrés Martín-Quirós, a PhD student with Dr. Gorostiza's lab, co-authors of the study, have spent four years working on the design of photo-sensitive peptides.

"Photo-sensitive peptides act like traffic lights and can be made to give a green or red light for cell endocytosis. They are powerful tools for cell biology," explains Dr. Giralt. "These molecules allow us to use focalized light like a magic wand to control biological processes and to study them," adds the physicist Pau Gorostiza, ICREA professor, and head of the "Nanoprobes and nanoswitches" lab at IBEC.

The researchers highlight the immediate applicability of these molecules to study, for example, in vitro endocytosis in cancer cells -where this process is uncontrolled- which would allow selective inhibition of the proliferation of these cells. Also, they would also allow the study of developmental biology -where cells require endocytosis to change shape and function, processes that are orchestrated with great spatial and temporal precision. In this context, photo-sensitive peptides will allow the manipulation of the complex development of a multicellular organism by means of light patterns. " In view of the results, we are now working towards a general recipe to design photo-switchable inhibitory peptides that can be used to manipulate other protein-protein interactions inside cells by applying light," explain the researchers.

Towards optopharmacology or therapeutic molecules regulated by light

"This first breakthrough will allow us to generate the same kind of peptides for chemical-medical applications," says Giralt. Dr. Gorostiza was the person who came up with the idea of manipulating biological and pharmacological processes through the use of light after spending five years specializing in this field at the University of California in Berkeley. The coordinator of the ERC Starting Grant project "OpticalBullet" and of the ERC Proof of Concept "Theralight", both involving collaboration with Giralt's lab, explains that, "the most immediate therapeutic applications we can expect is for diseases affecting superficial tissue such as the skin, the retina and the most external mucosal membranes."

The modification of biological processes by means of light is leading to the development of cutting-edge tools for biology and medicine and opening up new research fields, such as optopharmacology and optogenetics. The combination of drugs with external devices to control light may contribute to the development of personalized medicine in which treatments can be adapted to each patient, limiting the time given regions are treated, thus markedly reducing unwanted effects.

Improvements in lasers and chemical engineering

To work towards the development of photo-sensitive drugs, we must enhance the photochemical response of the compounds and be able to stimulate them at visible wavelengths. "Prolonged illumination with ultraviolet light is toxic for cells and is therefore a clear limitation as well has having little tissue penetration capacity," Giralt explains as an example. Furthermore, the photo-conversion of the compounds needs to be improved as does their stability in the dark in order to be able to "on demand, design them in such a way that they relax rapidly when irradiation with light stops or that they "remember" for hours or days the light stimulation received," adds Gorostiza.

This study has also involved the collaboration of researchers with IRB Barcelona's Advanced Digital Microscopy Platform, who designed an adhoc programme to be able to qualitatively and quantitatively validate the effects of the peptides inside the cells in real time. Similarly, in the field of biology, the team has been supported by Dr. Artur Llobet's group at IDIBELL.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine-IRB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laura Nevola, Andrés Martín-Quirós, Kay Eckelt, Núria Camarero, Sébastien Tosi, Artur Llobet, Ernest Giralt, Pau Gorostiza. Light-Regulated Stapled Peptides to Inhibit Protein-Protein Interactions Involved in Clathrin-Mediated Endocytosis. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201303324

Cite This Page:

Institute for Research in Biomedicine-IRB. "Chemical nanoengineering: Designing drugs controlled by light." ScienceDaily. ScienceDaily, 18 June 2013. <www.sciencedaily.com/releases/2013/06/130618101516.htm>.
Institute for Research in Biomedicine-IRB. (2013, June 18). Chemical nanoengineering: Designing drugs controlled by light. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/06/130618101516.htm
Institute for Research in Biomedicine-IRB. "Chemical nanoengineering: Designing drugs controlled by light." ScienceDaily. www.sciencedaily.com/releases/2013/06/130618101516.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins