Featured Research

from universities, journals, and other organizations

What do memories look like?

Date:
June 19, 2013
Source:
University of Southern California
Summary:
Scientists develop a way to see the structures that store memories in a living brain.

A living neuron in culture: Green dots indicate excitatory synapses and red dots indicate inhibitory synapses.
Credit: Don Arnold

Oscar Wilde called memory "the diary that we all carry about with us." Now a team of scientists has developed a way to see where and how that diary is written.

Related Articles


Led by Don Arnold and Richard Roberts of USC, the team engineered microscopic probes that light up synapses in a living neuron in real time by attaching fluorescent markers onto synaptic proteins -- all without affecting the neuron's ability to function.

The fluorescent markers allow scientists to see live excitatory and inhibitory synapses for the first time and, importantly, how they change as new memories are formed.

The synapses appear as bright spots along dendrites (the branches of a neuron that transmit electrochemical signals). As the brain processes new information, those bright spots change, visually indicating how synaptic structures in the brain have been altered by the new data.

"When you make a memory or learn something, there's a physical change in the brain. It turns out that the thing that gets changed is the distribution of synaptic connections," said Arnold, associate professor of molecular and computational biology at the USC Dornsife College of Letters, Arts and Sciences, and co-corresponding author of an article about the research that appears in Neuron on June 19.

The probes behave like antibodies, but they bind more tightly and are optimized to work inside the cell -- something that ordinary antibodies can't do. To make these probes, the team used a technique known as "mRNA display," which was developed by Roberts and Nobel laureate Jack Szostak.

"Using mRNA display, we can search through more than a trillion different potential proteins simultaneously to find the one protein that binds the target the best," said Roberts, co-corresponding author of the article and professor of chemistry and chemical engineering with joint appointments at USC Dornsife and the USC Viterbi School of Engineering.

Arnold and Roberts' probes (called "FingRs") are attached to green fluorescent protein (GFP), a protein isolated from jellyfish that fluoresces bright green when exposed to blue light. Because FingRs are proteins, the genes encoding them can be put into brain cells in living animals, causing the cells themselves to manufacture the probes.

The design of FingRs also includes a regulation system that cuts off the amount of FingR-GFP that is generated after 100 percent of the target protein is labeled, effectively eliminating background fluorescence -- generating a sharper, clearer picture.

These probes can be put in the brains of living mice and then imaged through cranial windows using two-photon microscopy.

The new research could offer crucial insight for scientists responding to President Barack Obama's Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative, which was announced in April.

Modeled after the Human Genome Project, the objective of the $100 million initiative is to fast-track research that maps out exactly how the brain works and "better understand how we think, learn and remember," according to the BRAIN Initiative website.

The research was supported by funding from National Institutes of Health (grant numbers GM-083898, MH-086381, GM-083898 and GM-060416).


Story Source:

The above story is based on materials provided by University of Southern California. The original article was written by Robert Perkins. Note: Materials may be edited for content and length.


Journal Reference:

  1. Garrett G. Gross, Jason A. Junge, Rudy J. Mora, Hyung-Bae Kwon, C. Anders Olson, Terry T. Takahashi, Emily R. Liman, Graham C.R. Ellis-Davies, Aaron W. McGee, Bernardo L. Sabatini et al. Recombinant Probes for Visualizing Endogenous Synaptic Proteins in Living Neurons. Neuron, 19 June 2013 DOI: 10.1016/j.neuron.2013.04.017

Cite This Page:

University of Southern California. "What do memories look like?." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619122123.htm>.
University of Southern California. (2013, June 19). What do memories look like?. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2013/06/130619122123.htm
University of Southern California. "What do memories look like?." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619122123.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins