Featured Research

from universities, journals, and other organizations

Promising new device detects disease with drop of blood

Date:
June 24, 2013
Source:
New Jersey Institute of Technology
Summary:
Scientists are creating a prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood.

An NJIT research professor known for his cutting-edge work with carbon nanotubes is overseeing the manufacture of a prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood. A new study describes how NJIT research professors Reginald Farrow and Alokik Kanwal, his former postdoctoral fellow, and their team have created a carbon nanotube-based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution.

Related Articles


"Using sensors, we created a device that will allow medical personnel to put a tiny drop of liquid on the active area of the device and measure the cells' electrical properties," said Farrow, the recipient of NJIT's highest research honor, the NJIT Board of Overseers Excellence in Research Prize and Medal. "Although we are not the only people by any means doing this kind of work, what we think is unique is how we measure the electrical properties or patterns of cells and how those properties differ between cell types."

In the article, the NJIT researchers evaluated three different types of cells using three different electrical probes. "It was an exploratory study and we don't want to say that we have a signature," Farrow added. "What we do say here is that these cells differ based on electrical properties. Establishing a signature, however, will take time, although we know that the distribution of electrical charges in a healthy cell changes markedly when it becomes sick."

This research was originally funded by the military as a means to identify biological warfare agents. However, Farrow believes that usage can go much further and potentially detect viruses, bacteria, even cancer. The research may also someday even assess the health of good cells, such as brain neurons. Since 2010, three U.S. patents, "Method of forming nanotube vertical field effect transistor," #7,736,979 (2010); "Nanotube device and method of fabrication" #7,964,143 (2011); "Nanotube device and method of fabrication" #8,257,566 (2012) were awarded for this device. In addition, more patents have been filed.

The device (shown in photo) utilizes standard complementary metal oxide semiconductor (CMOS) technologies for fabrication, allowing it to be easily scalable (down to a few nanometers). Nanotubes are deposited using electrophoresis after fabrication in order to maintain CMOS compatibility.

The devices are spaced by six microns which is the same size or smaller than a single cell. To demonstrate its capability to detect cells, the researchers performed impedance spectroscopy on mobile human embryonic kidney (HEK) cells, neurons from mice, and yeast cells. Measurements were performed with and without cells and with and without nanotubes. Nanotubes were found to be crucial to successfully detect the presence of cells.

Carbon nanotubes are very strong, electrically conductive structures a single nanometer in diameter. That's one-billionth of a meter, or approximately ten hydrogen atoms in a row. Farrow's breakthrough is a controlled method for firmly bonding one of these submicroscopic, crystalline electrical wires to a specific location on a substrate. His method also introduces the option of simultaneously bonding an array of millions of nanotubes and efficiently manufacturing many devices at the same time.

Being able to position single carbon nanotubes that have specific properties opens the door to further significant advances. Other possibilities include an artificial pancreas, three-dimensional electronic circuits and nanoscale fuel cells with unparalleled energy density.


Story Source:

The above story is based on materials provided by New Jersey Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alokik Kanwal, Shanmugamurthy Lakshmanan, Ashwini Bendiganavale, Corina T. Bot, Anitha Patlolla, Rahul Raj, Camelia Prodan, Zafar Iqbal, Gordon A. Thomas, Reginald C. Farrow. Scalable nano-bioprobes with sub-cellular resolution for cell detection. Biosensors and Bioelectronics, 2013; 45: 267 DOI: 10.1016/j.bios.2013.01.066

Cite This Page:

New Jersey Institute of Technology. "Promising new device detects disease with drop of blood." ScienceDaily. ScienceDaily, 24 June 2013. <www.sciencedaily.com/releases/2013/06/130624093520.htm>.
New Jersey Institute of Technology. (2013, June 24). Promising new device detects disease with drop of blood. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/06/130624093520.htm
New Jersey Institute of Technology. "Promising new device detects disease with drop of blood." ScienceDaily. www.sciencedaily.com/releases/2013/06/130624093520.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins