Featured Research

from universities, journals, and other organizations

New iron catalyst promises green future for hydrogenation

Date:
June 27, 2013
Source:
RIKEN
Summary:
A new iron nanoparticle catalyst promises to drastically improve the efficiency of hydrogenation, a key chemical process used in a wide array of industrial applications. Cleaner, safer and cheaper than traditional rare metal-based catalysts, the new, more environmentally friendly technique marks a breakthrough for the emerging field of green chemistry.

Iron nanoparticles (diameter: 90 micrometers).
Credit: Image courtesy of RIKEN

A new iron nanoparticle catalyst developed by researchers in Japan and Canada promises to drastically improve the efficiency of hydrogenation, a key chemical process used in a wide array of industrial applications. Cleaner, safer and cheaper than traditional rare metal-based catalysts, the new, more environmentally friendly technique marks a breakthrough for the emerging field of green chemistry.

Hydrogenation, the reaction of molecular hydrogen with another compound or element, is one of the world's most highly studied chemical reactions, with industrial applications ranging from petrochemistry, to food production, to pharmaceuticals.

Most such applications of hydrogenation use rare metal catalysts such as palladium or platinum to speed up chemical reactions. While highly efficient, these metals are expensive and limited in supply, posing environmental and economic challenges.

To get around these problems, researchers at McGill University, the RIKEN Center for Sustainable Resource Science and the Institute for Molecular Science developed their new technique using iron, a much less expensive and far more abundant element. Iron has been ruled out in the past due to the fact that it rusts in the presence of oxygen and water, negating its catalytic effect.

The new technique, described in a paper published in the journal Green Chemistry, produces iron nanoparticles directly inside a polymer matrix, which protects the iron surface from rusting while allowing the reactants to reach it and react. The resulting system of polymer-stabilized iron nanoparticles in water is the first of its kind: a safe, cheap and environmentally friendly catalyst system for hydrogenation reactions.

"Our aim is to develop iron-based catalysts not only for hydrogenation but also a variety of organic transformations that can be used in future industrial applications," explains RIKEN researcher Dr. Yoichi M. A. Yamada, one of the authors of the paper. "If rare metal-based catalysts can be replaced by iron-based ones, then we can overcome our costly and dangerous dependency on rare metals."


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Reuben Hudson, Go Hamasaka, Takao Osako, Yoichi M. A. Yamada, Chao-Jun Li, Yasuhiro Uozumi, Audrey Moores. Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 2013; DOI: 10.1039/C3GC40789F

Cite This Page:

RIKEN. "New iron catalyst promises green future for hydrogenation." ScienceDaily. ScienceDaily, 27 June 2013. <www.sciencedaily.com/releases/2013/06/130627083032.htm>.
RIKEN. (2013, June 27). New iron catalyst promises green future for hydrogenation. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/06/130627083032.htm
RIKEN. "New iron catalyst promises green future for hydrogenation." ScienceDaily. www.sciencedaily.com/releases/2013/06/130627083032.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins