Featured Research

from universities, journals, and other organizations

Simple math may solve longstanding problem of parasite energetics

Date:
July 2, 2013
Source:
University of California - Santa Barbara
Summary:
Feeling faint from the flu? Is your cold causing you to collapse? Your infection is the most likely cause, and, according to a new study, it may be possible to know just how much energy your bugs are taking from you.

This image shows Hymenolepsis diminuta, more commonly known as the rat tapeworm.
Credit: Todd Huspeni

Feeling faint from the flu? Is your cold causing you to collapse? Your infection is the most likely cause, and, according to a new study by UC Santa Barbara research scientist Ryan Hechinger, it may be possible to know just how much energy your bugs are taking from you. His findings are published in a recent issue of The American Naturalist.

"When we get sick -- particularly with infectious agents -- we often talk about having our 'energy drained,' or of 'having low energy,'" said Hechinger, an associate research biologist at UCSB's Marine Science Institute and Department of Ecology, Evolution and Marine Biology. "This common language highlights that energy may provide a useful currency to investigate how infectious agents, or parasites, impact their hosts."

Unfortunately, he added, there has been little research on the energetics of parasites and their hosts, largely because scientists have been stymied by the difficulty of measuring the energetics of parasites living inside their hosts.

However, it may be possible to predict how much energy parasites drain from their hosts, according to Hechinger, simply by modifying equations from the metabolic theory of ecology -- a theory that describes the relationships between metabolic rates, body temperatures, and sizes of organisms. Typically applied to animals and plants living in ecosystems, Hechinger said these equations could be used for parasites living in host bodies. Further, because a host's body is like an ecosystem for its parasites, applying the metabolic theory of ecology can provide unique ways to better understand the ecology of animals in larger ecosystems.

"We pretty much only need information on the host and parasite body sizes and temperatures -- which is easy information to get -- and we're good to go," Hechinger said. "With that info, we can go straight to energetics because we can estimate parasite and host metabolic rates -- how many calories they burn."

Initial tests supported the new theory. Hechinger analyzed data for parasitic worms in rats, including tapeworms, and for parasitic round worms infecting a wide range of mammal species. "The most important finding might be that there is a limit to how many worms you can cram into a host, and that limit is best reflected, not by the space available inside the host or by parasite biomass, but by host and parasite metabolic rates -- by energy," he said.

Energy as a currency is important, and, according to Hechinger, a more universal currency to describe parasitism than is the typical use of numbers. Using energy and the new equations might uncover universal rules about the nature of parasitism. "It may help us to not only measure, but also predict the influence of parasites in hosts and even entire ecosystems," Hechinger said. "This is especially important because ecology is increasingly documenting that parasites are major players in ecosystems -- just as important as predators and competitors."

"These equations may be particularly helpful when we deal with the real, complicated world where many types of parasites live within hosts, when it would be impossible, for instance, to directly measure the metabolic rates of each species," he said.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ryan F. Hechinger. A Metabolic and Body-Size Scaling Framework for Parasite Within-Host Abundance, Biomass, and Energy Flux. The American Naturalist, 2013; 000 DOI: 10.1086/670820

Cite This Page:

University of California - Santa Barbara. "Simple math may solve longstanding problem of parasite energetics." ScienceDaily. ScienceDaily, 2 July 2013. <www.sciencedaily.com/releases/2013/07/130702151059.htm>.
University of California - Santa Barbara. (2013, July 2). Simple math may solve longstanding problem of parasite energetics. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2013/07/130702151059.htm
University of California - Santa Barbara. "Simple math may solve longstanding problem of parasite energetics." ScienceDaily. www.sciencedaily.com/releases/2013/07/130702151059.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins