Featured Research

from universities, journals, and other organizations

Novel research model for study of auto-immune diseases developed

Date:
July 3, 2013
Source:
Institut de recherches cliniques de Montreal
Summary:
Scientists have discovered a novel research model for the study of auto-immune diseases. They have found a way to separate two important mechanisms that improve the quality of antibodies.

A team of researchers at the IRCM, led by Dr. Javier M. Di Noia in the Immunity and Viral Infections research division, discovered a novel research model for the study of auto-immune diseases. The Montrιal scientists are the first to find a way to separate two important mechanisms that improve the quality of antibodies. This study was featured in a recent issue of The Journal of Immunology.

Related Articles


Dr. Di Noia's team studies B cells, a group of white blood cells known as lymphocytes whose main function is to produce antibodies to fight against antigens. Antibodies are proteins used by the immune system to identify and neutralize foreign objects (antigens), such as bacteria and viruses, by precisely binding to them, thus making them an essential part of the immune system. Antibodies can come in different varieties (or classes), which perform different roles and adapt the immune response to eliminate each different toxin or pathogen they encounter. The body's great diversity of antibodies therefore allows the immune system to specifically neutralize an equally wide variety of antigens.

"Our project focused on two mechanisms that produce this wide variety of antibodies," says Dr. Di Noia, Director of the Mechanisms of Genetic Diversity research unit at the IRCM. "Because both processes are initiated by the same enzyme known as AID (activation-induced deaminase), it had previously been very difficult to study them separately. We were able to identify, for the first time, a mouse model in which the mechanisms could be analyzed independently during an acute immune response."

The two mechanisms in question are known as class switching and affinity maturation. Class switching is the process that allows a B cell to produce different classes of antibodies, so that a single antibody can be used by several different parts of the immune system. Affinity maturation, on the other hand, is the process by which B cells produce antibodies with increasingly stronger bonds to antigens during an immune response.

"Since eliminating AID would in turn completely eliminate affinity maturation and class switching, we focused on an enzyme called UNG, which is also involved in both processes," adds Astrid Zahn, research associate in Dr. Di Noia's laboratory and first author of the study. "When we analyzed mice lacking the UNG gene, we found that affinity maturation was normal but class switching was strongly reduced during acute immune responses, such as the response to immunization and against a viral infection."

"While over 100 AID-deficient patients have been identified, it is striking that only a handful of patients are known to be UNG-deficient," explains Dr. Zahn. "Our study, which shows that chronic antibody responses (those to environmental antigens) remain nearly normal without UNG, can explain why most UNG-deficient individuals are not detected among immunodeficient patients. Nevertheless, because we also found that acute antibody responses were significantly affected, we suspect that UNG-deficient people will, for example, respond very poorly to vaccination. In addition, as this work was conducted as part of a larger ongoing investigation of the complex relationship between AID and UNG, we believe that UNG might possibly act as a tumour-suppressor in B-cell lymphomas."

"Until now, it was difficult to study the relative importance of class switching and affinity maturation, and the impact of these two mechanisms on immune responses," concludes Dr. Di Noia. "Our study provides a novel model to study the contribution of these mechanisms in certain auto-immune diseases such as lupus and rheumatoid arthritis, or some infections like influenza."


Story Source:

The above story is based on materials provided by Institut de recherches cliniques de Montreal. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Zahn, M. Daugan, S. Safavi, D. Godin, C. Cheong, A. Lamarre, J. M. Di Noia. Separation of Function between Isotype Switching and Affinity Maturation In Vivo during Acute Immune Responses and Circulating Autoantibodies in UNG-Deficient Mice. The Journal of Immunology, 2013; 190 (12): 5949 DOI: 10.4049/%u200Bjimmunol.1202711

Cite This Page:

Institut de recherches cliniques de Montreal. "Novel research model for study of auto-immune diseases developed." ScienceDaily. ScienceDaily, 3 July 2013. <www.sciencedaily.com/releases/2013/07/130703140515.htm>.
Institut de recherches cliniques de Montreal. (2013, July 3). Novel research model for study of auto-immune diseases developed. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2013/07/130703140515.htm
Institut de recherches cliniques de Montreal. "Novel research model for study of auto-immune diseases developed." ScienceDaily. www.sciencedaily.com/releases/2013/07/130703140515.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins