Featured Research

from universities, journals, and other organizations

New insight into the human genome through the lens of evolution

Date:
July 11, 2013
Source:
Garvan Institute of Medical Research
Summary:
By comparing the human genome to the genomes of 34 other mammals, Australian scientists have described an unexpectedly high proportion of functional elements conserved through evolution. While other studies have shown that around 5-8 percent of the genome is conserved at the level of DNA sequence, indicating that it is functional, the new study shows that in addition much more, possibly up to 30 percent, is also conserved at the level of RNA structure.

By comparing the human genome to the genomes of 34 other mammals, Australian scientists have described an unexpectedly high proportion of functional elements conserved through evolution.

Less than 1.5% of the human genome is devoted to conventional genes, that is, encodes for proteins. The rest has been considered to be largely junk. However, while other studies have shown that around 5-8% of the genome is conserved at the level of DNA sequence, indicating that it is functional, the new study shows that in addition much more, possibly up to 30%, is also conserved at the level of RNA structure.

DNA is a biological blueprint that must be copied into another form before it can be actualised. Through a process known as 'transcription', DNA is copied into RNA, some of which 'encodes' the proteins that carry out the biological tasks within our cells. Most RNA molecules do not code for protein, but instead perform regulatory functions, such as determining the ways in which genes are expressed.

Like infinitesimally small Lego blocks, the nucleic acids that make up RNA connect to each other in very specific ways, which force RNA molecules to twist and loop into a variety of complicated 3D structures.

Dr Martin Smith and Professor John Mattick, from Sydney's Garvan Institute of Medical Research, devised a method for predicting these complex RNA structures -- more accurate than those used in the past -- and applied it to the genomes of 35 different mammals, including bats, mice, pigs, cows, dolphins and humans. At the same time, they matched mutations found in the genomes with consistent RNA structures, inferring conserved function. Their findings are published in Nucleic Acids Research, now online.

"Genomes accumulate mutations over time, some of which don't change the structure of associated RNAs. If the sequence changes during evolution, yet the RNA structure stays the same, then the principles of natural selection suggest that the structure is functional and is required for the organism," explained Dr Martin Smith.

"Our hypothesis is that structures conserved in RNA are like a common template for regulating gene expression in mammals -- and that this could even be extrapolated to vertebrates and less complex organisms."

"We believe that RNA structures probably operate in a similar way to proteins, which are composed of structural domains that assemble together to give the protein a function."

"We suspect that many RNA structures recruit specific molecules, such as proteins or other RNAs, helping these recruited elements to bond with each other. That's the general hypothesis at the moment -- that non-coding RNAs serve as scaffolds, tethering various complexes together, especially those that control genome organization and expression during development."

"We know that many RNA transcripts are associated with diseases and developmental conditions, and that they are differentially expressed in distinct cells."

"Our structural predictions can serve as an annotative tool to help researchers understand the function of these RNA transcripts."

"That is the first step -- the next is to describe the structures in more detail, figure out exactly what they do in the cell, then work out how they relate to our normal development and to disease."


Story Source:

The above story is based on materials provided by Garvan Institute of Medical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin A. Smith, Tanja Gesell, Peter F. Stadler, and John S. Mattick. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Research, July 11, 2013 DOI: 10.1093/nar/gkt596

Cite This Page:

Garvan Institute of Medical Research. "New insight into the human genome through the lens of evolution." ScienceDaily. ScienceDaily, 11 July 2013. <www.sciencedaily.com/releases/2013/07/130711103142.htm>.
Garvan Institute of Medical Research. (2013, July 11). New insight into the human genome through the lens of evolution. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/07/130711103142.htm
Garvan Institute of Medical Research. "New insight into the human genome through the lens of evolution." ScienceDaily. www.sciencedaily.com/releases/2013/07/130711103142.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins