Featured Research

from universities, journals, and other organizations

New insight into the human genome through the lens of evolution

Date:
July 11, 2013
Source:
Garvan Institute of Medical Research
Summary:
By comparing the human genome to the genomes of 34 other mammals, Australian scientists have described an unexpectedly high proportion of functional elements conserved through evolution. While other studies have shown that around 5-8 percent of the genome is conserved at the level of DNA sequence, indicating that it is functional, the new study shows that in addition much more, possibly up to 30 percent, is also conserved at the level of RNA structure.

By comparing the human genome to the genomes of 34 other mammals, Australian scientists have described an unexpectedly high proportion of functional elements conserved through evolution.

Less than 1.5% of the human genome is devoted to conventional genes, that is, encodes for proteins. The rest has been considered to be largely junk. However, while other studies have shown that around 5-8% of the genome is conserved at the level of DNA sequence, indicating that it is functional, the new study shows that in addition much more, possibly up to 30%, is also conserved at the level of RNA structure.

DNA is a biological blueprint that must be copied into another form before it can be actualised. Through a process known as 'transcription', DNA is copied into RNA, some of which 'encodes' the proteins that carry out the biological tasks within our cells. Most RNA molecules do not code for protein, but instead perform regulatory functions, such as determining the ways in which genes are expressed.

Like infinitesimally small Lego blocks, the nucleic acids that make up RNA connect to each other in very specific ways, which force RNA molecules to twist and loop into a variety of complicated 3D structures.

Dr Martin Smith and Professor John Mattick, from Sydney's Garvan Institute of Medical Research, devised a method for predicting these complex RNA structures -- more accurate than those used in the past -- and applied it to the genomes of 35 different mammals, including bats, mice, pigs, cows, dolphins and humans. At the same time, they matched mutations found in the genomes with consistent RNA structures, inferring conserved function. Their findings are published in Nucleic Acids Research, now online.

"Genomes accumulate mutations over time, some of which don't change the structure of associated RNAs. If the sequence changes during evolution, yet the RNA structure stays the same, then the principles of natural selection suggest that the structure is functional and is required for the organism," explained Dr Martin Smith.

"Our hypothesis is that structures conserved in RNA are like a common template for regulating gene expression in mammals -- and that this could even be extrapolated to vertebrates and less complex organisms."

"We believe that RNA structures probably operate in a similar way to proteins, which are composed of structural domains that assemble together to give the protein a function."

"We suspect that many RNA structures recruit specific molecules, such as proteins or other RNAs, helping these recruited elements to bond with each other. That's the general hypothesis at the moment -- that non-coding RNAs serve as scaffolds, tethering various complexes together, especially those that control genome organization and expression during development."

"We know that many RNA transcripts are associated with diseases and developmental conditions, and that they are differentially expressed in distinct cells."

"Our structural predictions can serve as an annotative tool to help researchers understand the function of these RNA transcripts."

"That is the first step -- the next is to describe the structures in more detail, figure out exactly what they do in the cell, then work out how they relate to our normal development and to disease."


Story Source:

The above story is based on materials provided by Garvan Institute of Medical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin A. Smith, Tanja Gesell, Peter F. Stadler, and John S. Mattick. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Research, July 11, 2013 DOI: 10.1093/nar/gkt596

Cite This Page:

Garvan Institute of Medical Research. "New insight into the human genome through the lens of evolution." ScienceDaily. ScienceDaily, 11 July 2013. <www.sciencedaily.com/releases/2013/07/130711103142.htm>.
Garvan Institute of Medical Research. (2013, July 11). New insight into the human genome through the lens of evolution. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/07/130711103142.htm
Garvan Institute of Medical Research. "New insight into the human genome through the lens of evolution." ScienceDaily. www.sciencedaily.com/releases/2013/07/130711103142.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins