Featured Research

from universities, journals, and other organizations

Ecological forces structure your body's personal mix of microbes

Date:
July 16, 2013
Source:
University of Washington
Summary:
Environmental conditions have a stronger influence on the mix of microbes living in your body than does competition between species. Instead of excluding each other, microbes that fiercely compete for similar resources are more likely to cohabit the same individual. The findings are a step toward building a predictive model of the human microbiome to study how medical conditions change this massive biological system, identify how to promote beneficial microbiomes, and design interventions for hard-to-manage problems like chronic digestive inflammation.

Artist's rendering of bacteria (stock image). New research has found that environmental conditions have a much stronger influence on the mix of microbes living in various parts of your body than does competition between species.
Credit: © jscreationzs / Fotolia

Environmental conditions have a much stronger influence on the mix of microbes living in various parts of your body than does competition between species. Instead of excluding each other, microbes that fiercely compete for similar resources are more likely to cohabit in the same individual.

This phenomenon was discovered in a recent study of the human microbiome -- the vast collection of our resident bacteria, fungi, and other tiny organisms.

The findings were published today, July 15, in the early online edition of PNAS, the Proceedings of the National Academy of Sciences.

The study is one of the early steps toward a major goal of Dr. Elhanan Borenstein, the lead scientist on the project. His team hopes to build a predictive model of the human microbiome as a tool to study how medical conditions can change this massive biological system, to identify settings that promote beneficial microbiomes, and to design clinical interventions to treat currently hard-to-manage problems. For example, diet or drug therapies might be developed to manipulate the microbiome to achieve desired outcomes, such as fixing a chronic digestive inflammation.

"The large communities of microbes residing on and inside us are critical to our state of health or illness," said Borenstein, a University of Washington assistant professor of genome sciences and computer science and engineering, who conducted the study with his graduate student, Roie Levy.

He explained why medical scientists are interested in the forces that structure our distinctive assemblies of microbes: This knowledge may show clinicians how to restore a more normal pattern in patients whose microbiome has been disrupted by illness, infection, toxins or injury. It can also help them better understand how disease states, such as obesity or inflammatory bowel disease are reflected in and affected by the microbiome.

"Through major genetics studies," Borenstein noted, "scientists have made valuable progress in gathering information on the species composition of the human microbiome in health and disease." He added that little is known, however, about the underlying ecology that determines the make-up of the human microbiome. Compositional studies alone do not explain how the various microbial species interact, cooperate or compete to form, maintain or alter their populations.

Borenstein and his team use a systems biology approach and apply sophisticated computer modeling to understand the structure, function, and dynamics of the microbiome. In the current study, for example, they utilized genomic information from hundreds of microbial species commonly found in humans to create computer models of nutrient and energy metabolism. From these models they predicted the nutrients each species requires and the interactions between microbes. Specifically, they were able to estimate how strongly each pair of microbes competes over available nutrients or cooperates in producing necessary compounds. They then compared these predicted interactions to the abundances of microbial species across samples from different individuals.

In this way they learned that species tend to co-exist more frequently with other species with which they strongly compete for their needs, instead of winners overtaking losers. Ecologists, including those who study bigger-size plants and animals, call this habitat filtering. It means that species with similar requirements for life are selected by the environment and co-occur in the same location. Habitat filtering contrasts with another theory, species assortment, in which organisms seeking nearly identical resources clash until a victorious species triumphs.

Borenstein noted, "Species interaction plays a role, but the environment exerts a stronger effect."

He also indicated that even when his research team corrected for the presence of obesity, inflammatory bowel disease and other factors, they still saw the previously observed pattern of competitor microbes staying together.

This suggests, he explained, that the lines along which species are filtered and microbiomes are assembled are not fully defined by major physiological abnormalities in a patient, but might take place at a finer scale.

The research was supported by a National Science Foundation Graduate Research Fellowship DGE-0718124, an Alfred P. Sloan Research Fellowship, and a New Innovator Award from the National Institutes of Health DP2 AT 007802-01.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Leila Gray. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Levy, E. Borenstein. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1300926110

Cite This Page:

University of Washington. "Ecological forces structure your body's personal mix of microbes." ScienceDaily. ScienceDaily, 16 July 2013. <www.sciencedaily.com/releases/2013/07/130716144039.htm>.
University of Washington. (2013, July 16). Ecological forces structure your body's personal mix of microbes. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/07/130716144039.htm
University of Washington. "Ecological forces structure your body's personal mix of microbes." ScienceDaily. www.sciencedaily.com/releases/2013/07/130716144039.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins